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Abstract

Latent variable models are becoming increasingly popular in economics for
high-dimensional categorical data such as text and surveys. Often the resulting
low-dimensional representations are plugged into downstream econometric models
that ignore the statistical structure of the upstream model, which presents serious
challenges for valid inference. We show how Hamiltonian Monte Carlo (HMC) im-
plemented with parallelized automatic differentiation provides a computationally
efficient, easy-to-code, and statistically robust solution for this problem. Via a se-
ries of applications, we show that modeling integrated structure can non-trivially
affect inference and that HMC appears to markedly outperform current approaches
to inference in integrated models.
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1 Introduction

As the amount of digitally recorded unstructured data continues to grow rapidly, em-

pirical work in economics is increasingly incorporating it. The leading example of such

data is text, which numerous papers in a variety of fields have recently used (Gentzkow

et al. 2019), but also includes others such as survey responses, images, and audio record-

ings. The most relevant feature of unstructured data for statistical modeling is that

observations typically have an enormous number of independent dimensions of variation.

Moreover, this variation is often expressed in terms of integer counts rather than contin-

uous variables.1 Effectively handling such high-dimensional categorical data is therefore

a major challenge in extracting information from unstructured data.

One common approach in the literature is to specify a statistical (typically Bayesian)

model that projects each observation onto a low-dimensional latent space that captures

the important variation in the high-dimensional feature space. In the natural language

context, a popular latent variable model is latent Dirichlet allocation (LDA, Blei et al.

2003). In LDA the latent space represents “topics” and each document is a mixture

over different topics. A recent selection of applications of LDA include macroeconomic

forecasting (Larsen and Thorsrud 2019, Bybee et al. 2020, Thorsrud 2020, Ellingsen

et al. 2021); conflict forecasting (Mueller and Rauh 2018); asset pricing (Hanley and

Hoberg 2019, Lopez Lira 2019); political deliberation (Hansen et al. 2018, Stiglitz and

Caspi 2020); central bank communication (Hansen and McMahon 2016, Hansen et al.

2019, Dieijen and Lumsdaine 2019); corporate finance (Adams et al. 2021); and media

economics (Nimark and Pitschner 2019, Bertsch et al. 2021). Latent variable models for

other data types closely related to LDA have also been adapted for survey data (Bandiera

et al. 2020, Munro and Ng 2020, Draca and Schwarz 2021) and for network data (Nimczik

2017, Olivella et al. 2021).

In these and other applications in economics and finance, obtaining a latent repre-

sentation of observations is typically not an end in itself but rather the first step in a

larger econometric strategy. The latent variable model serves to transform unstructured

data into a tractable, numeric form that is then plugged into a second-step regression

model in which it is effectively treated as given data. Two issues arise with this approach.

First, uncertainty in the latent representation from the first step is ignored in the sec-

ond step, which invalidates standard inference procedures. Furthermore, the regression

model usually imposes dependencies between latent representations and covariates that

are ignored in the first step. This implies a potential loss of information in the first step,

1For example, one of the simplest representations of a textual corpus is the bag-of-words model in
which each document is represented as a vector of integer counts over the unique vocabulary terms
in the corpus. Even relatively small corpora contain thousands of unique dimensions. Moreover, the
dimensionality grows even further as one consider richer linguistic units than individual words.
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as assumptions about the relationship between data and covariates are ignored in the

construction of the latent space.

The most natural way of overcoming these problems is to jointly specify the latent

variable model and associated regression model within a single, integrated data gener-

ating process. While formulating such integrated models is relatively straightforward,

conducting inference for them has to date been anything but, and required researchers to

derive and code complex posterior inference algorithms every time they specified a new

model. Applied economists do not normally have training in these methods, which in our

view is the main obstacle that prevents the direct modeling of dependencies of interest

in unstructured datasets.

We approach this problem with Hamiltonian Monte Carlo (HMC, MacKay 2003, Neal

2012), a Markov Chain Monte Carlo (MCMC) algorithm that uses information on the

gradient of a joint distribution to sample from it. HMC is the basis for MCMC estimation

in the popular probabilistic programming language Stan (Carpenter et al. 2017), which

has been previously used in applied Bayesian econometrics (e.g. Meager 2019). But for

posterior distributions with thousands of parameters or more and very high-dimensional

observations, which is typical for unstructured data, the computational burden of com-

puting gradients has until recently not been feasible. This has changed with the advent

of highly efficient algorithms for automatic differentiation that utilize the massive par-

allelization capacity of modern computer hardware, in particular Graphical Processing

Units (GPUs) and Tensor Processing Units (TPUs). These computational advances make

possible gradient-based inference in large, complex Bayesian models including those for

unstructured data.

The main contribution of our paper is to evaluate HMC implemented via parallelized

automatic differentiation as a means of conducting inference in latent variable models

for high-dimensional categorical data. To do so, we use the NumPyro package (Bingham

et al. 2018, Phan et al. 2019), one of whose key innovations is the efficient computation

of the gradients that underlie HMC. Through a series of applications on simulated and

real-world datasets, we show that HMC has several major advantages.

The first is ease of coding. Models that until several years ago required hundreds, or

even thousands, of lines of code to estimate can now be estimated using no more than

a few dozen. This radically reduces the cost of integrated modeling, and brings it well

within the technical capacity of applied economists.

The second is computational efficiency. Particularly when estimated on graphical pro-

cessing units (GPUs), one can obtain outstanding computational performance and draw

a large number of effectively independent samples from complex posterior distributions

relatively quickly.

The third is quality of inference. One of the most popular existing integrated mod-

3



els for text and covariates is the structural topic model (Roberts et al. 2014, 2016) in

which the topic shares of documents can depend on observables.2 We compare the R

package for the structural topic model (stm) (Roberts et al. 2019, with over 200,000 to-

tal downloads from Rstudio’s CRAN mirror)—which implements a variational inference

algorithm—with an HMC-based implementation based on automatic differentiation. In

a basic simulation environment, we show that our implementation appears to outper-

form stm in both point and interval estimation. Another gradient-based approach to

sampling is Langevin dynamics (LD) and its stochastic variant (SGLD, Welling and Teh

2011). Munro and Ng (2020) recently applied LD to model dynamic, latent structure in

economic survey data. We compare HMC against LD within the Munro and Ng (2020)

model, and show that LD converges slowly (or fails to converge within reasonable time),

while HMC converges quickly and again produces high quality point and interval esti-

mates. In short, our approach not only greatly simplify the coding of complex inference

procedures,3 but also appear to yield higher-quality estimates, at least in these leading

applications.

Finally, and perhaps most importantly, is the ability to develop new models. By shift-

ing the focus from inference to modeling, HMC with automatic differentiation allows the

researcher to rapidly prototype alternative models and to experiment with incorporating

different dependencies into the data generating process. We illustrate the ease with which

new models can be built by extending the analysis in Bandiera et al. (2020) to account

for situations in which latent variables both depend on observables and explain outcomes.

In summary, we introduce a new approach for inference in models of high-dimensional

categorical data with latent variables that depend on the economic environment in which

they are generated. HMC based on automatic differentiation shows excellent performance

in simulated and real-world datasets along numerous criteria, and we believe should

become an important part of the applied toolkit for unstructured data modeling going

forward. It allows a flexible approach to model building without sacrificing the quality

of inference, which so far has been lacking in the literature.

The rest of the paper proceeds as follows. Section 2 provides background on latent

variable models and HMC. Section 3 discusses HMC-based estimation of the structural

topic model of Roberts et al. (2014), while section 4 discusses HMC-based estimation of

the dynamic latent variable model of Munro and Ng (2020). Section 5 illustrates how

to build new regression models using HMC and applies them to the time use survey of

Bandiera et al. (2020). Section 6 concludes.

2For a recent application in economics, see Conde-Ruiz et al. (2021).
3Both the stm code (https://github.com/bstewart/stm) and the code for replicating Munro and

Ng (2020) (https://github.com/evanmunro/dhlvm) contain hundreds of lines of source code. The core
functions for HMC inference in these two cases contain fewer than 50 lines.
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2 Background

In this section, we first review the data generating process for latent Dirichlet allocation,

which forms the core model from which later models are built. We then provide illustra-

tive output from the minutes of Federal Open Market Committee meetings. Finally we

introduce a basic overview of Hamiltonian Monte Carlo.

2.1 Data generating process for LDA

We first introduce basic notation for discrete data in the case of text. Suppose there

are D total documents, with an individual document indexed by d. Each unique term

in the collection of documents is indexed by an integer v, and there are V total unique

terms.4 Each document is represented as a list of term indices wd of length Nd with

generic element wd,n ∈ {1, . . . , V }. One can collapse wd into a vector of term counts

xd ∈ ZV+ where xd,v is the count of term v in document d. The matrix whose rows are

x1, . . . ,xD is known as the document-term matrix.

LDA has two basic sets of model parameters. The first is K separate topics, which

are each represented by V -dimensional probability vectors {βk}Kk=1, where βk,v is the

probability that the a single word drawn from topic k is term v. The second is D

document-specific distributions {θd}Dd=1, each of dimensionality K, that represent the

association between documents and topics. Formally, each term in wd has a topic as-

signment zd,n ∈ {1, . . . , K} drawn independently from θd. The likelihood function for

document d is therefore

p(wd | θd, {βk}Kk=1) =

Nd∏
n=1

K∑
k′=1

p(wd,n | zd,n = k′, {βk}Kk=1)p(zd,n = k′ | θd) (1)

=

Nd∏
n=1

K∑
k′=1

βk′,wd,n
θd,k′ (2)

In principle, one could estimate the model by maximum likelihood applied to (1). In

practice, the large number of parameters makes this approach prone to overfitting and

MLE estimate is typically not unique (Ke et al. 2021). LDA introduces Dirichlet prior

distributions over model parameters to help alleviate these problems and to specify a gen-

erative process for θd;
5 each βk is drawn independently from Dir(η) and each θd is drawn

4Here term refers to a discrete unit from which language is built. This may or may not correspond to
recognized English words depending on how text is preprocessed. For example, stemming a corpus often
results in non-grammatical words. Also, the formation of multi-word expressions results in a single term
that stands in for a phrase.

5The non-Bayesian version of the model is known as probabilistic Latent Semantic Indexing (Hofmann
2017).
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independently from Dir(α).6 The Dirichlet distribution is conjugate to the categorical

distribution which makes it feasible to estimate the model using Gibbs sampler.

One common way of representing hierarchical Bayesian models is via plate diagrams

that make explicit the independence assumptions imposed by a model. Figure 7a shows

the plate diagram for LDA. The plates express repeated, independent draws of the random

variables in the model. So, for example, θd is inside a plate marked with D, which

expresses that θd is drawn D separate times. Arrows pointing to random variables express

the distributions from which they are drawn; in this case, θd is drawn from a Dirichlet

distribution with hyperparameter α, hence the arrow connecting α with θd. Inside the

document plate lies a term plate. Conditional on θd, the topic allocations zd,n for terms

in document d are drawn independently Nd times.

The presence of discrete random variables in this formulation of LDA makes gradient-

based sampling methods such as Hamiltonian Monte Carlo infeasible to implement. One

can eliminate the latent topic assignments by instead modeling a document as a draw

from a multinomial distribution. Given the above model, by the Law of Total Probability,

the probability of observing term v in any given location in document d is
∑

k βk,vθd,k.

Hence one can view document d as being generated by Nd independent draws from the

V -dimensional probability vector
∑

k βkθd,k so that xd ∼ Multinomial (
∑

k βkθd,k, Nd).

The likelihood then becomes

p(xd | θd, {βk}Kk=1) =
∏
v

(∑
k

βk,vθd,k

)xd,v

(3)

which depends only on continuous latent variables. Figure 7b shows a plate diagram for

the formulation of LDA with the latent topic assignment marginalized out of the model.

This formulation also highlights that LDA is a Bayesian factor model for discrete data,

where the factors are the topics {βk}Kk=1 and the document-specific factor loadings are

{θd}Dd=1.

2.2 Application of LDA to FOMC minutes

As an example corpus for illustrating the output of LDA, we use the minutes of Federal

Open Market Committee (FOMC) meetings from 1994-2015 inclusive, a period that in-

cludes 176 meetings in total. Minutes are released several weeks after FOMC meetings,7

and describe the main discussion that took place during the meeting. From the minutes

6The original (Blei et al. 2003) model places an asymmetric Dirichlet prior over the θd terms and does
not place a prior over the βk terms. Here we specify the model with symmetric Dirichlet distributions
over all categorical distributions since this is the most common formulation in economics papers. We
show below models that introduce document heterogeneity via the prior distribution over θd.

7They are publicly available at https://www.federalreserve.gov/monetarypolicy/fomc_

historical.htm.
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we extract the paragraphs that relate to the discussion of economic conditions, which to-

tal D = 1, 778. We then perform a sequence of standard pre-processing steps8 to obtain a

final dataset with 144,612 total terms and V = 1, 582 unique terms. The average number

of terms per paragraph is 81, with a standard deviation of 34.

To estimate LDA on the FOMC minutes, we use the collapsed Gibbs sampler of

Griffiths and Steyvers (2004),9 which is a standard and popular MCMC-based inference

algorithm for LDA. The conditional distributions needed for drawing samples from the

posterior are simple to derive given the conjugacy between the Dirichlet and multino-

mial distributions, and numerous efficient implementations exist (we use the Python lda

package). For the illustration we choose K = 10 topics, fix hyperparameters at α = 1

and η = 0.3, and draw 200 samples from the Markov chain (applying a thinning interval

of 10).

Figure 1a displays the estimation results. The first objects of interest are the topic-

term distributions {β}10k=1. For each topic, we display the ten most likely terms in de-

scending order across columns based on their posterior mean probabilities in topics. By

and large, the word groupings are interpretable: one observes topics related to finan-

cial markets (topic 1), investment (topic 3), labor market (topic 9), and so on. The

interpretability of the output of LDA is one of the reasons for its popularity.

In addition, each paragraph has an estimated distribution over topics θd. In order

to interpret variation in these, we first divide paragraphs into those generated during

recessions and those generated during expansions. We then compute the average value

of θd,k across all recession and expansion documents, respectively, for each topic k. The

topics in Figure 1a are ordered according to the difference in these average values. For

example, the words in paragraphs in recessions are estimated to be generated from topic

1 0.079 percentage points more frequently than words in paragraphs in expansions. The

two most counter-cyclical topics relate to the financial and housing markets. As these

markets were strongly associated with the largest downturn during our sample period,

the document-level variation in topics that we estimate is natural. On the other hand,

the most pro-cyclical topic relates to cost pressures, which are likely to be a salient driver

of inflation during periods of growth.

2.3 Hamiltonian Monte Carlo

Presenting an in-depth discussion of HMC is beyond the scope of this paper, and our

goal here is to give a high-level overview and an illustration of HMC applied to LDA.

8We expand contractions to their extended form (e.g. ‘don’t’ becomes ‘do not’); remove non-ASCII
characters; lower-case all words; remove punctuation; remove numbers; remove stopwords; stem remain-
ing words (with the Snowball stemmer); and trim stems that appear in fewer than 5 documents or more
than 40% of documents.

9For full details of this approach, see material in Hansen et al. (2018).
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Excellent articles that cover the basic ideas that underpin HMC are Neal (2012), Hoffman

and Gelman (2014), and Betancourt (2018). We are not aware of the application of HMC

to LDA or related models in the literature.

Suppose q(Φ) is a posterior distribution over M parameters of interest Φ. HMC is

an MCMC method for drawing samples from q(Φ) that uses information on its gradient.

Whereas Gibbs sampling requires the conditional distributions q(Φi | Φ−i) to exist in

closed form, HMC only requires the evaluation of the gradient of q. Hence HMC can

be implemented on a much larger class of models. Moreover, by explicitly incorporating

information about the shape of q, HMC explores q much more efficiently than algorithms

whose proposals have random walk behavior, particularly when Φ is high dimensional.

Sampling based solely on gradient information would tend to generate draws from the

posterior located at the mode rather than from the entire region in which the posterior

has non-negligible mass. To correct this problem, HMC introduces M auxiliary momen-

tum variables r ∼ N (0, IM). A new sample for Φ is obtained by first re-sampling the

momentum variables and then following for a specified number of steps a path described

by the Hamiltonian function:

H(Φ, r) = − log[q(Φ)] +
M∑
i=1

r2i
2
. (4)

with associated dynamics

dΦi

dt
=
∂H

∂ri
= ri and

dri
dt

= −∂H
∂qi

=
qi(Φ)

q(Φ)
. (5)

The path described by (5) generates a stable ‘orbit’ around a mode of the posterior

distribution. The role of the momentum variables’ re-sampling is to allow the algorithm

to explore all parts of the posterior that account for most of its mass (known as the typical

set). The full HMC algorithm iteratively samples momentum variables, approximates

the trajectories of Hamiltonian dynamics to generate proposals, and accepts or rejects

them based on the value of the joint density at the beginning and end of the trajectory,

as in the Metropolis-Hastings algorithm. Following the path allows for making distant

proposals that nevertheless have a high chance of acceptance10. The sampled Φ variables

are retained and the momentum variables are discarded.

The specific variant of HMC that we use is the No-U-Turn Sampler (NUTS, Hoffman

and Gelman 2014) implemented in NumPyro, a library for Python (Phan et al. 2019).

10The reason the Metropolis-Hastings correction is necessary is computational. If one could follow the
Hamiltonian dynamics exactly, the value of the joint density of r and Φ at the beginning and the end of
trajectories would be equal. However, the error introduced by approximating a continuous process with
discrete steps necessitates the correction.
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NUTS adds to the basic HMC algorithm a way of determining the length of the path

for generating samples. The intuitive idea is to follow Hamiltonian dynamics until the

resulting path begins to circle back to its starting point. This is efficient since it generates

proposals relatively far from each other, thus reducing correlation between draws. The

most popular implementation of NUTS is in Stan (Carpenter et al. 2017), which like

NumPyro is a probabilistic programming language. The advantage of NumPyro is com-

putational. The most costly part of implementing HMC is the computation of gradients

of the log-likelihood, an operation that is amenable to parallelization. NumPyro allows

users to deploy these computations to specialized hardware including Graphical Process-

ing Units (GPUs) and Tensor Processing Units (TPUs), which for the models considered

in this paper results in an order of magnitude or more reduction in computation time.

All models estimated with HMC in this paper use a single Nvidia Tesla T4 GPU with

2,560 CUDA cores.

To illustrate HMC, we return to the estimation of LDA on the FOMC dataset. The

basic Numpyro function for estimating LDA is displayed in section B.1. One aspect of

note is the utter simplicity of the code. Estimating the model first requires the user to

define the data generating process as a probabilistic function, which for LDA is expressed

in nine lines. Second, only a few additional lines are needed to apply the provided NUTS

sampler to this function. This is in contrast to the lda package above which contains

hundreds of lines (https://github.com/lda-project/lda). To estimate LDA on the

FOMC data, we use HMC to take 500 post-warmup draws from the posterior.

Since LDA is an unsupervised learning algorithm, the order of topics is not compa-

rable across models, and we need to match topics from HMC with those estimated from

the Gibbs sampler above. We form posterior mean estimates of {β}Kk=1 according to both

approaches, then compute the pairwise distance between term-topic distributions from

both methods. Each βk distribution from HMC is minimally distant to a unique distri-

bution from Gibbs sampling, which allows us to generate a one-to-one match based on

minimum distance. Figure 1b displays the top terms in each topic estimated with HMC,

and we observe very similar results to those associate with the Gibbs sampler in figure

1a. Figure 2 instead compares posterior mean estimates for θd,k and we again observe a

high concordance. In summary, mean parameter estimates are nearly identical for HMC

and Gibbs sampling, which suggests that one does not lose any information by relying

on gradient information rather than fully specified conditional distributions.

Of course, our goal in introducing HMC for the estimation of latent variable models

is not to replicate estimates that can be recovered equally well from Gibbs sampling, but

to allow a more flexible approach to modeling. The rest of the paper explores how HMC

can be used to estimate richer models beyond plain LDA.
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Figure 2: Comparison of Document-Term Distributions from Gibbs Sampling and HMC

Note: For each paragraph d in the FOMC data, we store the posterior mean document-
term distribution θd estimated by Gibbs sampling and by HMC. The ordering of topics
from both approaches is given in Figures 1a and 1b, respectively. This Figure displays a
scatter plot of the elements of θd from both approaches. The dotted line is the 45-degree
line.

3 HMC for Structural Topic Model

In the previous section, we observed that estimated topic shares in the FOMC minutes

appear to move with the business cycle. To formalize this dependence, one approach

would be to regress the estimated θd,k parameters from LDA on a recession indicator,

and such a two-stage process is indeed common in applied econometric work that uses

topic models to represent text. This strategy is a useful starting point for characterizing

how documents’ language varies with observables, but is problematic from the standpoint

of statistical inference. The second-stage regression ignores the uncertainty in the topic

shares inherited from the first stage. On one hand this makes default standard error

computations invalid. On the other hand, the estimation is inefficient, since it treats

all documents equally even though θd,k for some documents is far less uncertain (for ex-

ample for the longer ones) and these documents should be weighted more heavily. In

addition, the estimation of the topic model in the first stage assumes all documents are

exchangeable, and ignores the dependence structure between words and relevant covari-

ates assumed in the second stage. A natural solution to these problems is to model the

relevant structure directly, and perform inference in the joint model.

Our starting point is the structural topic model (STM, Roberts et al. 2014, 2016),
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which allows topic shares to depend on covariates. Here we present a simplified version of

the STM to provide an initial illustration of how to jointly model text and covariates and

to compare alternative approaches to inference.11 The data generating process is similar

to that of LDA, but with a different prior distribution on θd,k. The relationship between

document-level covariates gd and topic shares is first modeled as

θ̃d,k = γTk gd + εd,k where εd,k ∼ N (0, σ2), (6)

which defines a linear regression model relating a set of real-valued, auxiliary topic-share

parameters θ̃d,k to the covariates. The mapping to the simplex, where topic shares live,

is via the softmax function

θd,k =
exp(θ̃d,k)∑
k′ exp(θ̃d,k′)

. (7)

(6) and (7) together define a logistic normal prior distribution over θd. This prior struc-

ture is convenient since it expresses dependencies via standard regression models in the

space of real numbers which the Dirichlet is unable to capture. Since the K-dimensional

simplex has K−1 degrees of freedom, we normalize θ̃d,k = 0 for some k in order to identify

the remaining coefficients. The rest of the STM is as in LDA. K topic-term distributions

{βk}Kk=1 are each drawn independently from a Dirichlet prior distribution with parameter

η, and word counts xd are drawn from Multinomial (
∑

k βkθd,k, Nd).

While the replacement of the Dirichlet with the logistic normal allows the STM to

be more expressive, it also substantially complicates inference since the logistic normal

is not conjugate to the multinomial. This makes deriving exact conditional distributions

for the STM posterior infeasible, and Gibbs sampling cannot be used as in LDA. In-

stead, Roberts et al. (2014) use variational inference (VI) for parameter estimation. VI

assumes a simplified form for the posterior distribution, and then finds the member of the

simplified class that is closest to the true posterior via an optimization problem. There

are fewer statistical guarantees in VI than for MCMC methods but VI does allow the

computationally efficient estimation of complex Bayesian models.

An alternative approach to inference for the STM is Hamiltonian Monte Carlo based

on the NUTS algorithm. Although we are unaware of the application of HMC to inference

in topic modeling (STM or otherwise), it has attractive features. Since HMC is an MCMC

method, it allows one to draw samples from the true posterior rather than obtain a

variational approximation. Also, formulating the optimization problem for variational

inference is often not straightforward and involves extensive mathematical derivations

that vary from model to model. In contrast, Appendix B.2 contains a NumPyro function

needed to draw samples from the STM posterior. It is a basic extension of the LDA model

11The original STM model also allows the topic-term probabilities βk,v to depend on covariates, but
for simplicity we ignore that dependency in this section.
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coded in B.1 and builds the joint distribution in simple, transparent steps.12 Of course,

how HMC actually performs for inference is an empirical question, which we consider in

the remainder of this section.

The basic question we ask is to what extent different approaches to inference are

able to detect whether covariates drive topic coverage. The first approach ignores the

dependency structure between covariates and language by estimating LDA with the col-

lapsed Gibbs sampling algorithm of Griffiths and Steyvers (2004) and then treating the

estimated topic shares as dependent variables in a separate regression model. The sec-

ond is to use the stm package from Roberts et al. (2019) which implements a variational

inference algorithm. The third uses HMC to sample from the posterior with the NUTS

algorithm implemented in NumPyro.

3.1 Simulation exercise

We begin to answer this question with a simulation exercise. In each simulation there are

100 documents of length 25 and a potential vocabulary size of 500. We consider two topics

and normalize θ̃d,2 = 0. The share of the first topic is θ̃d,1 = γ0+γ1gd+εd where γ0 = γ1 =

1; εd ∼ N (0, 1); and gd ∼ N (0, σ2
g) where σ2

g is chosen so that the mean topic proportion

θd,1 when gd = 2σg is 0.75. This last features ensures that relatively few documents have

coverage concentrated mainly on one topic. Each β is drawn from a Dirichlet distribution

with concentration parameter η = 0.2. In total we simulate 50 datasets according to these

distributions.13 Our key question is to what extent alternative procedures produce high-

quality estimates of γ1, which determines the effect of the covariate on language and

would typically be the primary object of interest in an econometric study.

Method 1: separated model For each simulation, we estimate LDA on the realized

word counts by collapsed Gibbs sampling using α = 1 and η = 0.2 with the Python lda

package, taking 500 draws from the Markov chain (applying a thinning interval of 10

iterations). To obtain a point estimate of γ1 we fit the linear model

log

(
θ̂d,1

θ̂d,2

)
= γ0 + γ1gd + εd (8)

12Stochastic variational inference (Hoffman et al. 2013) seeks to simplify VI via automatic differenti-
ation, which also greatly simplifies coding requirements.

13The simulated data need not, and typically does not, have 500 unique words. In estimation we treat
V as the realized number of unique words.
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where θ̂d,k is the average value of θd,k across draws.14. The fitted value γ̂1 is the point

estimate. To approximate the 95% confidence interval we follow a bootstrap procedure:

1. For every draw s ∈ 1, . . . , 500 of the Markov chain, fit model (8) to obtain point

estimate γ̂s1 and associated standard error σ̂s1.

2. For every draw s, draw 1,000 samples from N (γ̂s1, σ̂
s
1).

3. Pool all 500 ∗ 1, 000 draws and discard the bottom and top 2.5%.

While many studies report asymptotic confidence intervals from the estimation of (8)

directly, the bootstrap procedure accounts for the variation in draws around their mean

values. In experiments we found that treating inferred topic shares as data may signifi-

cantly overestimate the precision of coefficients γ.

Method 2: integrated model with Variational Inference For each simulation,

we fit the STM with the stm package in R which provides a point estimate of γ1 based

on variational inference. To construct an interval estimate, we take 150 draws from

the estimated variational posterior for the document-level θd terms and follow the same

bootstrap procedure as for Method 1.

Method 3: integrated model with Hamiltonian Monte Carlo For HMC we use

a N (0, 5) prior distribution on the γ0 and γ1 terms and a Dirichlet prior on the βk terms

with concentration η = 0.2. We fix σg = 1. We draw 2,000 samples after a warmup

period of 1,000 draws. 95% credible intervals are constructed by discarding the bottom

and top 2.5% of draws.

Figure 3 displays the results of the simulation. The top panel plots point and interval

estimates produced by each method for each simulated dataset. The point estimates from

the separated model consistently underestimate the strength of the effect of covariate.

Intuitively, the estimation of LDA ignores the impact that gd has on topic coverage and

so is less able to separate documents on the basis of observables. On the other hand,

the variational inference algorithm consistently overestimates the strength of the effect

although across simulations point estimates are also quite variable. This suggests that the

independence assumptions imposed by the variational approximation lead to a material

loss of information in estimation. Finally, the HMC point estimates are evenly distributed

around the true value and are much less variable across simulations. This shows the gain

to sampling from the true posterior distribution.

14In the more general case with K topics and k̃ the normalized topic, there would be K−1 regressions

with dependent variables log

(
θ̂d,k

θ̂d,k̃

)
for k = 1, . . . , k̃ − 1, k̃ + 1, . . . ,K.
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(a) Point and interval estimates

(b) Frequency of inclusion in interval estimate

Figure 3: Simulation Results

Note: The figures show results from the simulation exercise comparing three inference
algorithms for estimating the γ1 coefficient in a structural topic model, which captures
the impact of variation in a covariate on topic coverage. The true value of γ1 is 1. The
algorithms were used to estimate the coefficient across 50 simulations. The top panel
shows point estimates as dots and interval estimates as vertical lines around the dots. The
horizontal grey line is the true value. The bottom figure displays the fraction of simulations
in which different values of γ1 appear in interval estimates.
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In order to study the implications for hypothesis testing, we construct figure 3b.

This shows in which fraction of simulations different values for γ1 appear in the interval

estimates. The true value of γ1 = 1 is most likely to appear in the interval estimates

produced by HMC (47 out of 50 times, consistent with our choice of 95% level for the

credible intervals), followed by the separated model, followed by variational inference. The

biases notable in the point estimates feed through into hypothesis tests. The separated

model fails to reject the null hypothesis that γ1 is as low as 0.5 in around 80% of the

simulations, while the variational inference algorithm consistently fails to reject the null

that γ1 is as high as 1.5.

Overall we observe that HMC achieves high-quality inference in this setting, as well

as being the algorithm that is easiest to code and implement.

3.2 Application on FOMC minutes

In order to illustrate the structural topic model on real data, we revisit the FOMC minutes

corpus from the previous section. The STM allows us to explicitly model topic coverage

as a function of the state of the economy, which we do via the regression

θ̃d,k = γ0,k + γ1,kRd + εd,k (9)

where Rd is an indicator for whether paragraph d is generated during a US recession

(as defined by the NBER). For the separated model, we use the LDA estimation from

the previous section along with the inference procedure described in the simulation to

obtain estimates for γ1,k. For HMC and VI, we use the same prior specifications as in the

simulation, but initialize values of βk to the posterior means from plain LDA to maintain

comparability of models. We choose the normalizing topic as the one that varies across

recessions the least according to table 1a, i.e. topic 5.

Table 4 contains the results. In line with the simulation exercise, the separated model

finds the most muted effects of recession on topic coverage, and identifies two topics (1

and 10) as varying significantly with recessions. HMC also estimates a significant effect

on these two topics, but with much larger magnitudes. In addition, HMC identifies two

additional topics (7 and 9) as also significantly related to recessions. Variational infer-

ence continues to exhibit large estimated intervals, meaning it only finds two significant

effects. Hence HMC appears most able to detect dependencies between recession and

topic coverage.
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Figure 4: Estimated Effect of Recession on FOMC Topic Coverage

Note: We use a structural topic model to express the dependence of topics in FOMC
minutes on a US recession indicator. This figures displays point and interval estimates for
the regression coefficients on the indicator across topics. The topics are initialized at values
given in table 1a.

4 HMC for Dynamic Survey Responses

The next model we consider is the dynamic model of survey responses from Munro and Ng

(2020). As with text data, survey data with ordinal responses can be modeled using latent

variables that capture correlation patterns in responses across individuals. Suppose we

consider a survey with J total questions, where question j has Lj options. For example,

respondents may be asked whether they disagree, neither agree nor disagree, or agree with

a sequence of statements about political views, in which case Lj = 3. One would expect

an ‘agree’ response to the question ‘do you support abortion rights?’ to be positively

correlated with an ‘agree’ response to the question ‘do you support gay marriage?’. One

can use latent variables to capture this correlation, which here would represent political

ideology. However, especially in surveys regarding beliefs about the economy, there is

likely to be a dynamic component to beliefs as respondents adjust their views in response

to new information about macroeconomic conditions.

Munro and Ng (2020) propose a model that admits such dynamics. Suppose that in

period t there are Nt respondents to a survey with J questions; that is, the structure

of the survey remains the same over time but the size of the population of respondents
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potentially varies.15 {βj}Kk=1 are K separate distributions that represent response profiles

for question j associated with different latent types. Person d is assigned a type zd,t ∈
{1, . . . , K} and her response to question j, which we denote xd,j,t ∈ {1, . . . , Lj}, is drawn

from βjzd,t . Here there are two notable difference compared to LDA. Whereas the case

of text only requires the specification of one distribution βk for each type k, here there

are J separate collections of type distributions that allow each question to have a unique

feature space. Second, while LDA allows different words in the same document to have

different latent topic assignments, each individual in this model is assigned a single type

which then determines the distributions over all questions. This feature can be relaxed

when the same individual repeatedly answers the same question, as we show in the next

section.

The specific data-generating process is the following:

βjk ∼ Dirichlet(ηj)

σk ∼ InverseGamma(v0, s0)

θ̃k,t ∼ Normal(θ̃k,t−1, σ
2
k)

θt = Softmax(θ̃t)

zd,t ∼ Multinomial(θt)

xd,j,t ∼ Multinomial(βjzd,t)

(DSR)

This hierarchical model is similar to LDA, but to introduce natural dynamics into the

distribution from which latent types are drawn, the Dirichlet prior on θt is replaced by

a logistic normal whose mean evolves according to a random walk16. This allows for a

smoothly evolving type distribution, and is similar to models that introduce dynamics

into generative models for text (Blei and Lafferty 2006). The plate diagram for the model

is in figure 9 (which omits the hyperparameters of the prior distributions).

As with the structural topic model, the replacement of the Dirichlet distribution with

the logistic normal complicates inference. Rather than use variational inference, however,

Munro and Ng (2020) tackle the problem with an MCMC approach based on Langevin

dynamics (LD), which is a special case of HMC in which gradient information is used to

update the Markov chain based on a single discrete step taken along the path defined by

Hamiltonian dynamics (Neal 2012).17 For this reason, one would expect the exploration

15Munro and Ng (2020) ignore any panel structure and any repeat respondents are treated as separate
individuals across all periods in which they participate.

16The random walk assumption implies that Var(θ̃k,t) increases with t and tends to infinity as t→∞. A
more realistic model might assume a stationary AR1 process. It would be straightforward to include this
structure as an extension to (DSR) with HMC, but we retain the random walk behavior for comparability
with the original model.

17An extension of LD is stochastic gradient Langevin dynamics (SGLV, Welling and Teh 2011). In
SGLD the gradient of the posterior is computed for a randomly drawn subset of observations, whereas
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of the posterior distribution under LD to be less efficient than that under NUTS since

NUTS traverses longer paths and so is likely to draw more uncorrelated samples. Another

advantage of Numpyro’s implementation of NUTS over the LD implementation of Munro

and Ng (2020) is that the former computes derivatives automatically whereas the latter

supplies an explicit functional form for the gradient to the sampler. This allows for much

terser code, as can be seen in appendix B.3 where we supply the Numpyro function for

sampling from the model defined in (DSR).

4.1 Simulation exercise

To explore the performance of LD and HMC, we again begin with an illustrative simula-

tion exercise. In each simulation, we have 50 time periods with 10,000 individual survey

respondents. In total there are eight survey questions, four of which have five responses

and four of which have six responses. We specify K = 4 latent types, and draw βjk from

a symmetric Dirichlet distribution with hyperparamter η = 0.1. We draw initial values

θ̃k,0 ∼ Normal(0, 1) and use σk = 0.1 for simulating the VAR.

For HMC estimation, we take 2,000 draws after discarding the first 500 as warmup.

Estimation time varies from 12 to 17 minutes per simulation. For LD estimation, we

use the code available at https://github.com/evanmunro/dhlvm and take 20,000 draws

after discarding the first 5,000. Estimation time varies from 35 to 40 minutes per simu-

lation on 3.5GHz Intel Xeon processors. While we take ten times as many draws from

the Markov chain that evolves according to LD, the important question is which method

produces more information about the posterior distribution which is also a function of

the (lack of) autocorrelation in draws.

Table 1 contains the key simulation results for the population type distributions rep-

resented by the θk,t parameters. Across all such parameters and all simulations, i.e.

4(latent types) × 50(time periods) × 20(simulations) = 4, 000 in total, we compute the

error as the difference between the posterior mean value of the parameter and its true

value from the simulation. The first row of table 1 displays the mean value of the error,

as well as its distribution across parameters, for both estimation methods. On average,

HMC and LD produce accurate point estimates. However, in the tails of the distribution

we observe substantially higher errors for LD than for HMC. Hence, from the perspective

of accurate point estimation, HMC appears to outperform LD.

Since LD and HMC are both sampling methods, we can use standard Bayesian diag-

nostics for MCMC estimation to compare the extent to which they explore the posterior

and accurately represent its shape beyond the first moment. The first statistic we report

is effective sample size (ESS), which depends on the estimated autocorrelation between

the implementation of Munro and Ng (2020) computes the gradient over all observations.
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Table 1: Simulations Results for Estimation of Type Probabilities

Mean Quantile Frac > 1.1

0.05 0.5 0.95

Error HMC 0 -0.03 0 0.03
LD 0.01 -0.1 0 0.16

Effective Sample Size HMC 424.43 165.39 402.04 747.15
LD 4.65 1.31 3.3 11.14

Gelman-Rubin R̂ HMC 1 1 1 1.01 0
LD 1.48 1.03 1.39 2.12 0.84

Note: In each of 20 simulations, we record draws for type probabilities θk,t in model
(DSR) from Markov chains that evolve according to Hamiltonian Monte Carlo and
Langevin dynamics, respectively. Error is defined as the difference between the posterior
mean and the true value of a parameter. Gelman-Rubin R̂ is a measure of convergence;
the closer its value is to 1, the stronger the evidence for convergence. Values larger than
1.1 are typically taken as evidence that the Markov chain has not converged. Effective
sample size accounts for autocorrelation in Markov chains and is the number of effectively
independent draws from the posterior distribution. HMC was run for 2,000 post-warmup
iterations, LD was run for 20,000 post-warmup iterations. Results in this table are pooled
across all simulations.

draws of a Markov chain and represents the number of effectively independent draws from

the posterior distribution.18 The second statistic we report is Gelman-Rubin R̂ (Gelman

and Rubin 1992), which assesses the extent to which a Markov chain has converged to

a stationary distribution. Its lowest value is 1, which indicates convergence, with higher

values indicating a failure to converge.

The second and third rows of table 1 display results for both diagnostics, and we

observe enormous differences between methods. In spite of our drawing 20,000 total sam-

ples, LD produces a very limited number of effective samples. This suggests that LD does

not effectively explore the posterior distribution and the samples remain strongly corre-

lated for very long periods of time. In contrast, HMC produces a large number of effective

samples, and along the same order of magnitude as the number of samples (2,000). This

implies that one can accurately compute moments of the posterior distribution using the

HMC samples, for example the credible intervals around the θt,k parameters. Consistent

with a slow exploration of the posterior, we also observe that LD fails to converge for the

majority of parameters, whereas R̂ is close to 1 in all cases.

Figure 5 provides striking visual evidence of the implications of the differing abilities

of LD and HMC to explore the posterior distribution. For the first simulation, we focus

on a single parameter θ1,25, i.e. the probability of the first latent type being drawn in the

period-25 population. The left-hand plots represent the estimated posterior distributions

18See section 11.5 of Gelman et al. (2013) for a detailed discussion; we use formula 11.8 computed via
the arviz package in Python.
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Figure 5: Posterior Distribution and MCMC Time-Series for an Example Parameter.

Note: On the left, the plots display inferred posterior distribution of an example parameter
(θ1,25) in a single simulation obtained using Langevin dynamics and Hamiltonian Monte
Carlo. LD seemingly underestimates the posterior variance. On the right, the plots show
the value of this parameter at different steps of the Markov Chain. For clarity, LD samples
are thinned by the factor of 10. Samples obtained with LD display vary high autocorrelation
which results in low effective sample size. Note that the vertical scale on the right-hand
plots is not the same.
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of this parameter produced by each method. While both share similar modes, LD esti-

mates a nearly degenerate distribution while HMC produces a full distribution. While

we cannot obtain the true posterior distribution, uncertainty quantification based on LD

is likely to be highly misleading. The different shapes of the posterior are linked to the

time series behavior of the Markov chains from which samples are drawn, and which we

show in the right-hand plots. HMC produces a cloud of uncorrelated draws that vary

over a significant range, while LD produces highly correlated draws that move within a

narrow range (note the vertical scales in the plots differ).

The main conclusion from this analysis is that Hamiltonian dynamics are much more

effective at exploring the posterior distribution of the dynamic survey response model

than Langevin dynamics. While point estimates are comparable, LD generates almost

no variation around those estimates which limits its effectiveness for uncertainty quan-

tification and accurately estimating other higher-order moments. Moreover, from an

implementation perspective, HMC via Numpyro is substantially easier to code since all

that is required is the specification of a joint distribution in a single, compact function.

We therefore see very few downsides of adopting HMC over LD in latent variable models

for categorical data.

4.2 Michigan Consumer Survey

In order to assess whether these same properties hold on real data, we also use LD

and HMC to estimate the model in (DSR) on the University of Michigan’s Survey of

Consumers on the same sample as do Munro and Ng (2020). This consists of monthly

survey responses from approximately 500 participants from January 1978 through May

2019, with a total of 204,944 responses during this period. The survey consists of 14

total questions related to beliefs on economic conditions, such as ‘Will you be better

or worse financially a year from now?’ with the possible responses ‘worse’, ‘same’, and

‘better’. (See https://data.sca.isr.umich.edu/ for additional details). Like Munro

and Ng (2020) we estimate a model with K = 4.19 Figure 6(a) plots posterior means

and 95% credible intervals for each estimated θk,t. For three of the four types, posterior

means evolve in a similar way over time, and, as Munro and Ng (2020) explain, the time

series variation relates strongly to various macroeconomic indicators. However, the two

methods produce quite distinct time series for θ2,t: for HMC, the time series exhibits

cyclical variation while, for LD, the time series appears less interpretable and θ2,t hovers

near zero for the final 15 years of the sample. Moreover, as in the simulation above, HMC

produces meaningful uncertainty bands around the posterior means while LD does not.

19We follow Munro and Ng (2020) in not normalizing the value of a particular latent class k′ to have
θ̃k′,t for all t even though, as discussed in the previous section, K distinct values θ̃1,t, . . . , θ̃K,t are not
uniquely identifiable in this model.

22

https://data.sca.isr.umich.edu/


(a) Full sample (b) 5% sample

0.00

0.25

0.50

0.75

1.00

1980 1990 2000 2010 2020

Ty
pe

 θ
1

0.00

0.25

0.50

0.75

1.00

1980 1990 2000 2010 2020

Ty
pe

 θ
1

0.00

0.25

0.50

0.75

1.00

1980 1990 2000 2010 2020

Ty
pe

 θ
2

0.00

0.25

0.50

0.75

1.00

1980 1990 2000 2010 2020

Ty
pe

 θ
2

0.00

0.25

0.50

0.75

1.00

1980 1990 2000 2010 2020

Ty
pe

 θ
3

0.00

0.25

0.50

0.75

1.00

1980 1990 2000 2010 2020

Ty
pe

 θ
3

0.00

0.25

0.50

0.75

1.00

1980 1990 2000 2010 2020

Ty
pe

 θ
4

0.00

0.25

0.50

0.75

1.00

1980 1990 2000 2010 2020

Ty
pe

 θ
4

Model Hamiltonian Monte Carlo Langevin Dynamics

Figure 6: Michigan Data: Comparison of Belief Type Time Series

Note: This figure plots the posterior mean estimates of θk,t from model (DSR) estimated
on Michigan Consumer Survey data from 1978 through 2019 using Langevin dynamics and
Hamiltonian Monte Carlo, respectively. Around the posterior means, we shade 95% credible
intervals.
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Table 2 displays the same diagnostic statistics we report in table 1 but for estimation

on the consumer survey data. We observe similar patterns whereby HMC explores the

posterior much more widely than LD, whose convergence behavior on real data if anything

looks worse than in the simulated data.

Table 2: Michigan Data: Convergence diagnostics for type probability variables, θk,t

Mean Quantile Frac > 1.1

0.05 0.5 0.95

Effective Sample Size HMC 1543.17 847.76 1561.23 2225.98
LD 2.98 1.3 1.32 12.82

Gelman-Rubin R̂ HMC 1 1 1 1.01 0
LD 1.88 1.08 2.09 2.12 0.94

Note: We record draws for type probabilities θk,t in model (DSR) estimated on Michigan
Consumer Survey data from 1978 through 2019 from Markov chains that evolve according to
Hamiltonian Monte Carlo and Langevin dynamics, respectively. Gelman-Rubin R̂ is a measure
of convergence; the closer its value is to 1, the stronger the evidence for convergence. Values
larger than 1.1 typically mean the Markov chain has not converged. Effective sample size
accounts for autocorrelation in Markov chains and is the number of effectively independent
draws from the posterior distribution. HMC was run for 1000 post-warmup iterations, LD
was run for 3000 post-warmup iterations, identical to reported in Munro and Ng (2020).

Finally, to investigate how the algorithms perform on differently-sized date, we rees-

timate the model on a random sample of 5% observations. The resulting time series are

presented in Figure 6(b). We observe that HMC finds very similar mean posterior values

of θk,t based on the full sample and the 5% subsample and the latter indicates substan-

tially more uncertainty in the estimates, as expected. On the other hand, LD appears to

have failed to converge. Most notably, with 5% sample LD has not been able to find the

periodic behaviour present in θ3,t.

The findings on the Michigan consumer survey data reinforce the main message of

the simulations that full Hamiltonian dynamics provide major improvements in inference

quality.

5 HMC for Supervised Topic Model

So far we have shown that HMC compares favorably with other approaches for estimat-

ing existing latent variable models (the structural topic model and the dynamic survey

response model). In our final application, we show that HMC also allows a researcher to

quickly develop and prototype new models that capture dependencies of interest while

also conducting valid hypothesis testing. By reducing the burden of developing inference

algorithms, HMC helps to shift focus from computational difficulties to modeling choices.
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The data we use to develop new models is on CEO time use and comes from Bandiera

et al. (2020). A cross section of 916 CEOs participated in a survey that recorded features

of time use in each 15-minute interval of a given week, e.g. Monday 8am-8:15am, Monday

8:15am-8:30am, and so forth. The recorded categories are 1) the type of activity (meeting,

public event, etc.); 2) duration of activity (15m, 30m, etc.); 3) whether the activity is

planned or unplanned; 4) the number of participants in the activity; 5) the functions

of the participants in the activity (HR, finance, suppliers, etc.). In total there are 654

unique combinations of these features observed in the data. Similarly to text data, we

can denote xd,v as the number of times feature combination v appears in the time use

diary of CEO d. On average a CEO is engaged in 88.4 activities, with a minimum of 2

and a maximum of 222.

Bandiera et al. (2020) use LDA with K = 2 dimensions to organize the time use

data.20 The authors refer to these dimensions as pure behaviors, and each one gives a

separate distribution over time use combinations β1 and β2. θd,1 is called the CEO index

and is the tendency of CEO d to draw his or her time use according to pure behavior

1. The goal is to describe salient differences in executive time use, and relate these to

firm and CEO characteristics as well as firm outcomes. The main regression specification

takes the form

yd = γθd,1 + qTd ζ + εd (10)

where yd is the log of firm d sales, qd is a vector of firm observables (e.g. labor inputs

and sector of activity), and θd,1 is the CEO index. The authors first estimate LDA on the

time use data using the collapsed Gibbs sampler of Griffiths and Steyvers (2004), then

form an estimate θ̂d,1 based on the posterior mean. They then use this an input into the

productivity regression (10).

As mentioned in Section 3, such use of inferred objects in regression is statistically

problematic. In addition to the problems outlined there (inefficiency, incorrect standard

errors, failure of the IID assumption), in this example the estimated γ̂ is likely to be biased

towards 0 due to the measurement error in θ̂d,1. Notice, the variance of the measurement

error εd = (θd,1 − θ̂d,1) is going to be larger for the observations for which the CEO

was involved in fewer activities, and for which these activities have similar probabilities

under both pure behaviors. The integrated model presented below will reduce the bias

resulting from measurement error by effectively weighting more heavily the observations

whose measurement error is likely to be smaller, as indicated by the posterior density21.

20The reason off-the-shelf LDA can be used in this survey data but not the survey data in the previous
section is that each CEO effectively answers the same survey multiple consecutive times, i.e. in each
fifteen-minute unit of time in a week. This allows one to model a distribution over combinations of
question responses rather than each question separately.

21Intuitively, OLS regression applies a penalty equal to squared deviation between fitted value and
data. Meanwhile, in our model the penalty depends on the difference in posterior density between the

25



To address these issues we propose to reformulate the two-step procedure (first esti-

mating LDA and then running OLS regression) as a single, fully-specified Bayesian model.

The model builds on the Supervised Topic Model (Blei and McAuliffe 2010) by adding

covariates and prior distributions on regression coefficients. We believe this model is novel

in the economics literature22 and we call it Supervised LDA. The model is described by

the data generating process in (S-LDA). A plate diagram representation is presented in

appendix figure 10.

βk ∼ Dirichlet(η)

γ0,k ∼ Normal(0, σγ0 )

θd ∼ LogisticNormal(γ0, Iσ
θ)

xd ∼ Multinomial

(∑
k

βkθd,k, Nd

)
χ ∼ Normal(0, Iσχ)

ζ ∼ Normal(0, Iσζ)

σy ∼ Gamma(s0, s1)

yd ∼ Normal(θTd χ+ qTd ζ, σ
2
y)

(S-LDA)

In essence, the model combines a topic model—described by the first column of equa-

tions in (S-LDA)—with a standard Bayesian regression with normal priors on the coeffi-

cients—described by the second column. While this formulation admits the general case

with an arbitrary K, we use K = 2 below in line with Bandiera et al. (2020).

To estimate the model we standardize all numerical variables, set the standard de-

viations of the Normal priors to σγ0 = σθ = σχ = σζ = 2, use a symmetric Dirichlet

concentration parameter η = 1, and set the parameters of the Gamma prior on regression

errors to s0 = 20 and s1 = 0.5. We use log of firm sales as the regression outcome yd, and

log of employment and year and country dummies as covariates qd.

Turning to results, we begin by analyzing the probability distributions over activities,

βk. To do so, we use the relative probability of various subsets of activities V a—for

example all the activities involving meeting suppliers—between pure behaviors 1 and

2,
∑

v∈V a β̂1,a∑
v∈V a β̂2,a

.23 Column (1) of table 3 reproduces these ratios from the original paper

while column (2) presents the results from (S-LDA). Despite the modeling differences

(including using a logistic normal distribution in place of a Dirichlet prior for θd) they are

broadly similar. In both cases we see that a CEO that primarily exhibits pure behavior

1 conducts relatively fewer plant visits, meetings with supplier and production-related

activities and relatively more meetings with C-suite executives. Bandiera et al. (2020)

dubbed this behavior leadership, as opposed to management.

The main finding of Bandiera et al. (2020) was that higher inferred θ̂d,1 is associated

mode of θd,1 and the fitted value. The observations whose posterior densities of θd,1 are flatter will then
have less weight in determining the slope of the regression line.

22We were made aware that a related model is concurrently studied in the computer science literature
by Ahrens et al. (2021)

23For details see Bandiera et al. (2020)
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Activity
Bandiera et al

(2020)
S-LDA SS-LDA

(1) (2) (3)

Plant Visits 0.11 0.11 0.11
Suppliers 0.32 0.43 0.34
Production 0.46 0.39 0.40
Just Outsiders 0.58 1.27 0.68
Communication 1.49 1.30 1.36
Multi-Function 1.90 1.20 1.43
Insiders and Outsiders 1.90 1.85 2.02
C-suite 33.90 11.67 19.36

Table 3: Relative probability of observing certain activities between Pure Behavior 1
and Pure Behaviour 2. The value of 1 indicates that this activity is equally likely under
both Pure Behaviours. Values higher than 1 mean that this type of activity is more likely
to be performed under Pure Behavior 1.

with better firm performance measured by sales and profits. In other words, the com-

panies where CEOs are primarily leaders perform better. Column (1) of table 4 reports

the coefficients from the regression part of S-LDA model. Consistent with the findings in

the original paper we find that θd,1 is positively associated with higher sales controlling

for firm’s employment, year and country. The magnitude is economically large and the

estimate is statistically significant in a Bayesian sense.

5.1 Extension: Structural Supervised-LDA

In addition to showing that low-dimensional representations of CEO behavior are strongly

associated with firm performance, Bandiera et al. (2020) also analyzed which CEO and

firm characteristics are associated with behaviors. This question is investigated using

OLS regressions of the form:

θ̂d,1 = gTd γ + εd,

where gd is a vector of CEO d characteristics and the associated firm. Noticeably, this

question is very closely related to the problem studied in section 3 of this paper: what is

the impact of covariates on the propensity to use certain topics.24 As a dramatic example

of flexibility of HMC we will now extend our S-SLDA by incorporating elements of STM,

thereby creating Structural Supervised LDA (SS-LDA).

The data generating process assumed in this model is identical to S-LDA except for

24An important distinction between OLS regression of topic shares on covariates and STM in that in
the latter the “dependent” variables are the “unnormalized” topics θ̃d ∈ R. As in logistic regression, in
the STM the marginal effect of covariates on topic shares is non-linear.
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Table 4: Model Coefficients from S-SLDA and SS-SLDA applied to CEO data.

Dependent Variable:

Log(sales) Un-normalized CEO Index

S-LDA SS-LDA SS-LDA
(1) (2) (3)

CEO Index, θd,1 0.282 0.317
(0.119, 0.417) (0.178, 0.488)

Log Employment 0.945 0.95 0.438
(0.902, 1.008) (0.911, 0.985) (0.38, 0.499)

MBA 0.346
(0.21, 0.471)

Family CEO -0.728
(-0.85, -0.595)

Public Firm -0.986
(-1.172, -0.819)

MNE 1.081
(0.927, 1.265)

Controls X X X

Note: The point estimate is the mean posterior value of the coefficients. In parenthesis we
report 95% (symmetric) Bayesian credible intervals. The Un-normalized CEO index is a
real valued variable. In order to obtain the CEO Index from the Un-normalized CEO Index
one needs to apply the softmax transform. MBA is a dummy indicating if a CEO has MBA
degree, Family CEO takes value one if the firm is owned and managed by founding family.
Public Firm take value of one if the firm is listed. MNE takes value of one if the firm is a
multinational enterprise.

the fact that the CEO type is assumed to be distributed as

θd ∼ LogisticNormal
[
(gTd γ1, . . . , g

T
d γK)T , Iσθ

]
and coefficients in this model are given the prior γk ∼ Normal(0, Iσγ). Importantly, if gd

is a constant, SS-LDA nests S-LDA. The model code in appendix B.4 reflects it—moving

from S-LDA to SS-LDA requires modifying just two lines of code.

We estimate this model with hyperparameters identical to the ones described above,

with the addition of setting σγ = 2; as before we first standardize all of the numeric

variables. The covariates gd we select are: firm employment, whether or not the CEO

has an MBA, whether or not a firm is owned and managed by a founding family, whether

or not the firm is a multinational enterprise, and whether it is listed. Note that the

variables that explain θd need not coincide with those that explain yd.

Turning to results of SS-LDA, comparing Columns (2) and (3) in Table 3 we see that

with the addition of gd, the relative probabilities of different activities change somewhat,

typically in the direction of increasing the differences between the pure behaviors (the
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ratios are further away from 1). Looking at the effect of CEO behavior on sales in Column

(2) of table 4, we continue to find a strong positive association. Finally, looking at the

relationship between firm characteristics and the unnormalized, real-valued CEO index25

we observe that larger employment and holding an MBA degree increase the CEO index,

i.e. make it more likely for a CEO to be a leader. On the other hand, CEOs of family

firms have lower values of the index, i.e. they are more likely to be managers. Perhaps

surprisingly, the effects of being a public firm and being an MNE go in opposite directions,

where the latter increases the CEO index.

Altogether, this section shows that HMC gives a researcher the ability to analyze

questions of interest in an intellectually consistent framework, without relying on using

moments of an inferred posterior distribution as data and appealing to the asymptotic

theory of OLS. The approach we propose fully accounts for uncertainty in the inferred

latent variables such as θd, which not only results in correct Bayesian credible regions (as

opposed to incorrect OLS asymptotic confidence intervals), but also increases efficiency

and reduces bias. Given the relative simplicity of adopting this methodology in NumPyro

we believe applied researchers would greatly benefit from it.

6 Conclusion

In this paper, we have shown how Hamiltonian Monte Carlo deployed with efficient

algorithms for automatic differentiation can be used to sample from complex posterior

distributions of the type that arise in unstructured data analysis. Our results suggest

that this framework is beneficial whenever a researcher wishes to jointly specify a latent

variable model for dimensionality reduction together with a regression model involving

those latent representations. As this encompasses the large majority of applications of

latent variable models for unstructured data in economics, we believe our findings to be

of broad interest. Applied researchers can now model problem-specific dependencies and

conduct valid inference without resorting to deriving and coding complex algorithms. We

therefore expect Hamiltonian Monte Carlo to become a core part of unstructured data

analysis going forward.

It is also important to acknowledge the limitations of HMC for unstructured data

modeling. One constraint is scalability. The applications we have explored in this paper

do not involve vast amounts of data, nor do many in the literature. For those that do,

however, HMC-based inference is likely to be infeasible due to computational burdens.

Historically variational inference algorithms have been used for posterior approximation

25Recall, θd is a point on the simplex, θd = Softmax(θ̃d). As before, we normalize θ̃d,K = 0 since the
K-dimensional simplex has K − 1 degrees of freedom. The unnormalized CEO index is then given by
θ̃d,1.
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with large data, and these too can be formulated as probabilistic programs that rely on

automatic differentiation (Hoffman et al. 2013). More recently, scalable extensions of

HMC based on stochastic approximations of gradients have shown initial promise (Dang

et al. 2019). NumPyro supports these other approaches, and we leave for future research

the question of which inference procedures best suit which big-data problems. In any

case, we remain confident that formulating these procedures as probabilistic programs

will be key to their widespread adoption.

Identification in LDA and related models is also an area of active research, and the

choice of priors over the categorical distributions can affect inference even asymptotically

(Ke et al. 2021). These issues relate more to the structure of the model than to a

particular approach to inference. Moreover, by allowing researchers to focus more on

modeling and less on the implementation of algorithms, the methods we introduce can

also help empirically assess the impact of different prior choices on parameter estimation.

Finally, at a high level, HMC is an algorithm for sampling from joint distributions.

Since structural models in economics are usually formulated as joint distributions over

model parameters and data, HMC can be used for efficient structural estimation. Blei

et al. (2021) integrates a latent variable model for text with a structural model of learning

to recover agents’ beliefs, and uses HMC for parameter estimation. HMC as a means for

incorporating unstructured data into structural models is an exciting future prospect.
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Conde-Ruiz, J. I., Ganuza, J.-J., Garćıa, M., and Puch, L. A. (2021). Gender Distribution

across Topics in Top 5 Economics Journals: A Machine Learning Approach. Technical

Report 1241, Barcelona Graduate School of Economics.

31



Dang, K.-D., Quiroz, M., Kohn, R., Tran, M.-N., and Villani, M. (2019). Hamiltonian

Monte Carlo with Energy Conserving Subsampling. Journal of Machine Learning Re-

search, 20(100):1–31.

Dieijen, M. and Lumsdaine, R. L. (2019). What Say They About Their Mandate? A

Textual Assessment of Federal Reserve Speeches. SSRN Scholarly Paper ID 3455456,

Social Science Research Network, Rochester, NY.

Draca, M. and Schwarz, C. (2021). How Polarized are Citizens? Measuring Ideology from

the Ground-Up. SSRN Scholarly Paper ID 3154431, Social Science Research Network,

Rochester, NY.

Ellingsen, J., Larsen, V., and Thorsrud, L. A. (2021). News Media vs. FRED-MD for

Macroeconomic Forecasting. Journal of Applied Econometrics, forthcoming.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.

(2013). Bayesian Data Analysis. Chapman and Hall/CRC, Boca Raton, 3rd edition

edition.

Gelman, A. and Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple

Sequences. Statistical Science, 7(4):457–472.

Gentzkow, M., Kelly, B., and Taddy, M. (2019). Text as Data. Journal of Economic

Literature, 57(3):535–574.

Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the

National Academy of Sciences, 101(suppl 1):5228–5235.

Hanley, K. W. and Hoberg, G. (2019). Dynamic Interpretation of Emerging Risks in the

Financial Sector. The Review of Financial Studies, 32(12):4543–4603.

Hansen, S. and McMahon, M. (2016). Shocking language: Understanding the macroe-

conomic effects of central bank communication. Journal of International Economics,

99:S114–S133.

Hansen, S., McMahon, M., and Prat, A. (2018). Transparency and Deliberation Within

the FOMC: A Computational Linguistics Approach*. The Quarterly Journal of Eco-

nomics, 133(2):801–870.

Hansen, S., McMahon, M., and Tong, M. (2019). The long-run information effect of

central bank communication. Journal of Monetary Economics, 108:185–202.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic Variational

Inference. Journal of Machine Learning Research, 14(4):1303–1347.

32



Hoffman, M. D. and Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting

Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research,

15(47):1593–1623.

Hofmann, T. (2017). Probabilistic Latent Semantic Indexing. ACM SIGIR Forum,

51(2):211–218.

Ke, S., Olea, J. L. M., and Nesbit, J. (2021). Robust Machine Learning Algorithms for

Text Analysis. Unpublished manuscript.

Larsen, V. H. and Thorsrud, L. A. (2019). The value of news for economic developments.

Journal of Econometrics, 210(1):203–218.

Lopez Lira, A. (2019). Risk Factors That Matter: Textual Analysis of Risk Disclosures

for the Cross-Section of Returns. SSRN Electronic Journal.

MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms. Cam-

bridge University Press, Cambridge, UK ; New York, illustrated edition edition.

Meager, R. (2019). Understanding the Average Impact of Microcredit Expansions: A

Bayesian Hierarchical Analysis of Seven Randomized Experiments. American Economic

Journal: Applied Economics, 11(1):57–91.

Mueller, H. and Rauh, C. (2018). Reading Between the Lines: Prediction of Political

Violence Using Newspaper Text. American Political Science Review, 112(2):358–375.

Munro, E. and Ng, S. (2020). Latent Dirichlet Analysis of Categorical Survey Responses.

Journal of Business & Economic Statistics, pages 1–16.

Neal, R. M. (2012). MCMC using Hamiltonian dynamics. arXiv:1206.1901 [physics,

stat].

Nimark, K. P. and Pitschner, S. (2019). News media and delegated information choice.

Journal of Economic Theory, 181:160–196.

Nimczik, J. S. (2017). Job Mobility Networks and Endogenous Labor Markets. Technical

Report 168147, Verein für Socialpolitik / German Economic Association.

Olivella, S., Pratt, T., and Imai, K. (2021). Dynamic Stochastic Blockmodel Regression

for Network Data: Application to International Militarized Conflicts. arXiv:2103.00702

[cs, stat].

Phan, D., Pradhan, N., and Jankowiak, M. (2019). Composable Effects for Flexible and

Accelerated Probabilistic Programming in NumPyro. arXiv:1912.11554 [cs, stat].

33



Roberts, M. E., Stewart, B. M., and Airoldi, E. M. (2016). A Model of Text for Ex-

perimentation in the Social Sciences. Journal of the American Statistical Association,

111(515):988–1003.

Roberts, M. E., Stewart, B. M., and Tingley, D. (2019). Stm: An R Package for Structural

Topic Models. Journal of Statistical Software, 91(2).

Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K.,

Albertson, B., and Rand, D. G. (2014). Structural Topic Models for Open-Ended

Survey Responses. American Journal of Political Science, 58(4):1064–1082.

Stiglitz, E. and Caspi, A. (2020). Observability and Reasoned Discourse: Evidence from

the U.S. Senate. SSRN Scholarly Paper ID 3627564, Social Science Research Network,

Rochester, NY.

Thorsrud, L. A. (2020). Words are the New Numbers: A Newsy Coincident Index of the

Business Cycle. Journal of Business & Economic Statistics, 38(2):393–409.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin

dynamics. In Proceedings of the 28th International Conference on International Confer-

ence on Machine Learning, ICML’11, pages 681–688, Madison, WI, USA. Omnipress.

34



A Plate Diagrams
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Figure 7: Plate Diagram for Latent Dirichlet Allocation

Note: Hyperparameters are denoted with shaded rectangles; random variables with un-
shaded circles; and data with shaded circles. Random variables that lie within a given plate
are exchangeable. In the model on the left, discrete topic assignments are drawn per word
zd,n. In the model on the right, these assignments have been marginalized out of the model
so that all random variables are continuous. xd is a vector of document d word counts (a
length V vector, where V is the number of vocabulary terms).
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Figure 8: Plate Diagram for the Structural Topic Model

Note: In the structural topic model, document-level covariates gd affect the prevalence of
topics in documents. They combine with regression coefficients γk to generate topic shares
θd via a logistic normal prior distribution. The term-topic distributions βk are drawn from
Dirichlet distributions as in plain LDA. Here we omit prior hyperparameters from the plate
diagram.

Figure 9: Plate Diagram for the Dynamic LDA.
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Figure 10: Plate Diagram for the Supervised LDA.
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Figure 11: Plate Diagram for the Structural Supervised LDA.
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B Numpyro Model Codes

B.1 Plain LDA

1 def lda(X, K, alpha, eta):
2 # X: document-word matrix of BoWs
3 # K: number of topics
4 # alpha: Dirichlet hyperparameter for topic prevalence
5 # eta: Dirichlet hyperparameter for topic concentration
6

7 D, V = jnp.shape(X)
8 N = X.sum(axis = 1)
9

10 # document-topic distributions
11 with plate("docs", D):
12 theta = sample("theta", dist.Dirichlet(alpha*jnp.ones([K])))
13

14 # topic-word distributions
15 with plate("topics", K):
16 beta = sample("beta", dist.Dirichlet((eta) * jnp.ones([V])))
17

18 # likelihood
19 distMultinomial = dist.Multinomial(total_count = N,
20 probs = jnp.matmul(theta, beta))
21 with plate("hist", D):
22 sample("obs", distMultinomial, obs = X)
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B.2 Structural Topic Model

1 import jax.numpy as jnp
2 from jax.nn import softmax
3 from numpyro import sample, plate, deterministic
4 import numpyro.distributions as dist
5

6 def stm(X, G, K, eta, norm_topic=0, sigma_gamma=2, sigma_theta=1):
7 # X: document-word matrix of BoWs
8 # G: matrix of covariates entering topic selection
9 # K: number of topics

10 # eta: Dirichlet hyperparameter for topic concentration
11 # norm_topic: index for topic to be normalized to zero
12 # sigma_gamma: variance for gaussian prior on topic prevalence coefficients
13 # sigma_theta: variance for logistic-normal prior on topic prevalence
14

15 try:
16 D, M = G.shape
17 except:
18 G = jnp.expand_dims(G, axis=1)
19 D, M = G.shape
20 V = X.shape[1]
21 N = X.sum(axis = 1)
22

23 # document-topic distributions
24 with plate("tpcs", K-1):
25 with plate("characteristics", M):
26 gamma = sample("gamma", dist.Normal(0, sigma_gamma))
27 with plate("doc_proportions", D):
28 eps = sample("eps",dist.Normal(0,1))
29 try:
30 _, _ = gamma.shape
31 except:
32 gamma= jnp.expand_dims(gamma, axis=0)
33 A = jnp.matmul(G, gamma) + sigma_theta * eps
34 A = jnp.hstack([A[:,0:norm_topic], jnp.zeros([D,1]) ,A[:,norm_topic:]])
35

36 theta = softmax(A, axis = -1)
37 theta = deterministic("theta", theta)
38

39 # topic-word distributions
40 with plate("topics", K):
41 beta = sample("beta", dist.Dirichlet(jnp.ones([V]) * eta))
42

43 # likelihood
44 with plate("docs", D):
45 sample("obs", dist.Multinomial(total_count = N,
46 probs = jnp.matmul(theta, beta)), obs = X)
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B.3 Dynamic LDA

1 import jax.numpy as jnp
2 import numpyro.distributions as dist
3 from jax import nn, jit, vmap
4

5 from numpyro import sample, deterministic, factor
6 from numpyro.contrib.control_flow import scan
7

8 def dynamic_lda_logLik(y, beta, phi):
9 # y: array of selected answers

10 # phi: array of type-probabilities
11 # beta: list (of length J) of type-answer probabilities
12 J = len(beta)
13 logProbs = [dist.CategoricalProbs(beta[j]).log_prob(y[j]) for j in range(J)]
14 logProbs = jnp.vstack(logProbs).sum(0) + jnp.log(phi)
15 return nn.logsumexp(logProbs)
16

17 dynamic_lda_logLik = jit(vmap(logLik, in_axes = (0, None, 0)))
18

19 def dynamic_lda(Y, K, T, I, eta, v0 = 10, s0 = 1):
20 # Y : survey answers
21 # K : number of types (topics)
22 # T : number of time periods
23 # I : vector of time indices for each observation
24 # eta: Dirichlet hyperparamter
25 # v0, s0: Inverse gamma hyperparameters
26

27 J = Y.shape[1]
28

29 # variance of errors
30 sigma_sq = sample("sigma_sq", dist.InverseGamma(v0, s0).expand([K]))
31

32 # Standard deviation of difference in w errors
33 sigma_tilde = jnp.sqrt(sigma_sq[1:K] + sigma_sq[0])
34

35 # Initial differences in (unnormalized) type probabilities
36 pi_tilde_0 = sample("pi_tilde_0", dist.Normal(0, 5 * sigma_tilde ))
37

38 def transition(state_prev, i):
39 state_cur = sample("pi_tilde", dist.Normal(state_prev, sigma_tilde))
40 return state_cur, state_cur
41 _ , pi_tilde = scan(transition, pi_tilde_0, jnp.ones([T]))
42

43 # Array of time-type probabilities
44 pi = nn.softmax(jnp.hstack([jnp.zeros([T,1]), pi_tilde]), axis = 1)
45 pi = deterministic("pi", pi)
46

47 # List of length J of type-answer probabilities
48 beta = [sample("beta_{}".format(j), dist.Dirichlet(eta[j])) for j in range(J)]
49

50 # Likelihood
51 factor("logLik", dynamic_lda_logLik(Y, beta, phi[I]))
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B.4 Structural Supervised LDA

1 import jax.numpy as jnp
2 import numpyro.distributions as dist
3 from numpyro import sample, plate
4 from jax.nn import softmax
5

6

7 def structural_slda(Y, X, N, Z, Q, K, eta = .1, alpha = 1):
8 # Y : regression outcomes
9 # X : document-word matrix of BoWs

10 # N : total word counts per document
11 # Z : matrix of non-text covariates
12 # Q : matrix of covariates entering topic selection
13 # K : number of topics
14 # eta, alpha : Dirichlet hyperparamters
15

16 D, V = X.shape
17 z,q = Z.shape[1], Q.shape[1]
18

19 #### LDA part of model
20

21 with plate("topics", K):
22 # Topic-word distributions
23 beta = sample("beta", dist.Dirichlet(eta * jnp.ones(V)))
24

25 phis = sample("phis", dist.Normal(0,2).expand([q, K-1]))
26

27 with plate("docs", D, dim = -2):
28 A = sample("A", dist.Normal(jnp.matmul(Q, phis) , alpha))
29

30 # document-topic distributions
31 theta = softmax(jnp.hstack([A, jnp.zeros([D, 1])]), axis = -1)
32

33 distMultinomial = dist.Multinomial(total_count=N, probs = jnp.matmul(theta, beta))
34 with plate("hist", D):
35 sample("obs_x", distMultinomial, obs = X)
36

37 #### Regression part of model
38 gammas = sample("gammas", dist.Normal(0, 2).expand([K-1]))
39 zetas = sample("zetas", dist.Normal(0,2).expand([z]))
40 sigma = sample("sigma", dist.Exponential(1.))
41

42 mean = jnp.matmul(theta[:,:(K-1)], gammas) + jnp.matmul(Z, zetas)
43

44 with plate("y", D):
45 sample("obs_y", dist.Normal(mean, sigma), obs = Y)

41
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