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Abstract

We use variational inference (VI), a technique from the machine learning literature,

to estimate a mortality-based Bayesian model of nursing home quality accounting for

selection. We demonstrate how one can use VI to quickly and flexibly estimate a high-

dimensional economic model with large datasets. Using our facility quality estimates,

we examine the correlates of quality and find that public report cards have near-zero

correlation. We then show that in contrast to prior literature, higher quality nursing

homes fared better during the pandemic: a one standard deviation increase in quality

corresponds to 2.5% fewer Covid-19 cases.
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1 Introduction

In order for health care markets to function well, it is critical for patients and insurers to be

able to observe provider performance. Lacking information, consumers will not be able to

identify and select better providers, which in turn under-incentivizes investment in quality

(Dranove and Satterthwaite 1992). Yet, quality measurement is notoriously challenging, and

this complexity can diminish the returns to efforts to improve information. The nursing home

industry may be the poster child of this problem. Despite significant investments in improv-

ing measurement, quality remains infamously low.1 Meanwhile, multiple investigations have

found that the public report cards that serve as the primary system of quality measurement

are subject to rampant manipulation, as facilities systematically misreport information so

as to maximize their ratings (Thomas 2014; Silver-Greenberg and Gebeloff 2021).

In this paper, we propose a new method to estimate the causal effect of admission to

a given nursing home on 90-day survival, while controlling for patient selection. Though

averting mortality is not the exclusive aim of nursing home care, this causal effect is a relevant

dimension of facility quality, and may be used to evaluate the validity of existing measures.

We account for endogenous patient selection using the distance between the facility and each

patient’s home zip code as an instrumental variable. While this is a common approach in

the literature (c.f. Grabowski et al. (2013) and Einav, Finkelstein, and Mahoney (2022)),

we also conduct several tests of the exclusion restriction.

To link this quasi-experimental variation in facility choice with our binary health outcome

measure, we propose a structural Bayesian model of nursing home quality, in the style of

Geweke, Gowrisankaran, and Town (2003) and Hull (2020). Due to the large number of

parameters, typical sampling-based estimation approaches are computationally infeasible,

and so we adapt a technique from the machine learning literature (‘variational inference’)

tailored for models in which the number of parameters often stretches into the millions.

This approach replaces the objective function with an approximation, thereby facilitating

optimization. We show in a simulation exercise that this procedure recovers the true values

and offers a substantial speedup against conventional MCMC-based approaches. In doing

so, we demonstrate that VI may be used as a general purpose estimation algorithm for a

wide class of computationally challenging models within economics. Despite its popularity

in computer science, VI has seen very limited adoption in economics; however, now that

desirable theoretical properties have been established (Wang and Blei 2019; Medina, Olea,

Rush, and Velez 2021), we anticipate interest in the method to grow substantially.

1. For instance, one report found that more than one in five Medicare patients who stayed in a nursing
facility for 35 days or fewer experienced harm as a result of their medical care (Office of Inspector General
2014).
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Using the facility-level quality estimates, we then answer two questions. First, we evaluate

the performance of the public report card system. These scores, intended to serve as easy

reference points for consumers, are organized into “star ratings” and include measures of

staffing, facility inspections, and patient-level outcome measures. Prior work studying similar

report cards in other health care settings has found mixed results (Abaluck, Caceres Bravo,

Hull, and Starc 2021; Doyle, Graves, and Gruber 2019). We find that that there is near-

zero correlation between the report cards and our survival-based quality estimates. Even

conditioning on narrow measures of geography, very little of the variation in nursing home

quality can be explained by the variation in the star ratings.

Second, we apply the estimates to a question that has emerged in the wake of the Covid-19

pandemic’s devastation of the nursing home industry: did higher quality facilities fare better?

A flurry of recent articles have found no relationship between Covid-19 and star ratings, with

one recent systematic review concluding that providers therefore had few levers available to

combat the spread of Covid-19 (Konetzka et al. 2021). We re-visit this question using our

quality estimates, and find that contrary to the consensus, higher quality nursing homes

indeed fared better during the Covid-19 pandemic: facilities with one standard deviation

higher quality had 2.5% fewer Covid-19 cases per bed, suggesting there may be some scope

to limit adverse outcomes.

This paper primarily contributes to a considerable literature on quality estimation in

the health care sector. The majority of work in this area studies hospitals: for instance,

Gowrisankaran and Town (1999), Doyle, Graves, and Gruber (2019), Geweke, Gowrisankaran,

and Town (2003) and Hull (2020) all estimate models of hospital quality using mortality.

The latter two derive models from which we borrow heavily. For these models, we show the

power of VI as a general-purpose estimation algorithm, particularly in cases where traditional

methods can be computationally intractable.

Our work is closely related to contemporaneous research by Einav, Finkelstein, and Ma-

honey (2022) (hereafter, EFM). To study nursing home value-added, they construct a unidi-

mensional health index that measures how fit a patient is to return to the community, and

study the average change in this index over 30 days. Doing so requires estimating a model

of “selection into” nursing homes – similar to ours – and “selection out,” where discharge

decisions are a function of the health index. This health index arguably comprises a richer,

albeit less transparent, measure of value than the binary 90-day survival outcome that we

use. However, this added richness comes at the cost of additional assumptions: the authors

must account for selection ‘out’ of the facility, as not all patients receive multiple assess-

ments. Moreover, measurement error coming from the construction of a health index will

tend to distort quality estimates. In contrast, because mortality is observed perfectly for
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all residents, we only have to grapple with selection in, without concern for measurement

error. Additionally, our estimation method allows us to consider larger markets, resulting in

a small share of patients choosing a facility outside their local market.

In terms of measuring quality and value-added (two tightly intertwined concepts2), our

findings are complementary with those of EFM. We both find that public report cards are

poor predictors of the causal effect of a given nursing home admission on health outcomes.

However, our studies differ in application: EFM document considerable within- and cross-

market variation in nursing home value-added, an issue we sidestep. Instead, we show

that our quality estimates predict out-of-sample heterogeneity in nursing home outcomes

during the Covid-19 pandemic. For a more detailed comparison between our two studies,

see Appendix D.

2 Institutional Details and Data

2.1 Specialization and Selection

This paper considers quality estimation of CMS-certified skilled nursing facilities (SNFs),

commonly referred to as nursing homes. SNFs are health care facilities that provide a wide

range of services, including skilled nursing care, specialized rehabilitative services such as

physical therapy, occupational therapy, and speech therapy, in addition to treatment for the

mentally ill and developmentally disabled.

Given the diversity of treatment requirements across patient types, it is natural that

SNFs specialize in their care provision (Mor, Banaszak-Holl, and Zinn 1995). Facilities

invest in specialty care units, such as Alzheimer’s wards, which may affect the types of

patients who select these facilities. In addition to patient-side selection, a pair of recent

papers present evidence that nursing homes themselves may worsen this selection problem

by strategically admitting and discharging less profitable patients as the opportunity cost of

maintaining those patients increases (Gandhi 2020; Hackmann, Pohl, and Ziebarth 2021).

These papers raise an additional concern. To the extent that some nursing homes are better

able to select their patient censuses on unobserved risk, quality estimation based purely on

risk-adjustment would be biased. Specifically, one would systematically overestimate quality

for more selective facilities, and underestimate quality for less selective facilities.

2. EFM model within-patient changes in health status, and as such refer to their facility-level parameters
as facility “value-added.” In contrast, our set-up is closer to the traditional health care context, in which we
identify institutional quality using (selection-adjusted) mean outcomes across facilities.
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2.2 Nursing Home Compare

The most prominent public reform to raise quality is the introduction of the Nursing Home

Compare website by CMS. NHC provides public report cards on each SNF, aggregating in-

formation on patient outcomes and process measures, results from recent facility inspections,

and data on levels of staffing. Facilities are assigned a star rating out of five for each of the

components, in addition to an overall composite rating. The logic of NHC is to reduce infor-

mation asymmetry; by giving consumers more information, they can choose higher quality

providers.

While the NHC star ratings are widely used measures of quality by both consumers

and researchers, there are substantial concerns regarding their accuracy. Two investigations

found that even 5-Star facilities can have horrific living conditions, and consumers often feel

misled by the system (Thomas 2014; Silver-Greenberg and Gebeloff 2021). In a compre-

hensive overview of the literature on the NHC system, Konetzka, Yan, and Werner (2021)

provide two potential explanations for the system’s shortcomings. The first is a standard

multitasking moral hazard problem: because NHC includes relatively narrow quality mea-

sures, facilities can target these measures while shirking on excluded measures (Holmstrom

and Milgrom 1991). For example, NHC initially reported the use of physical restraints, but

not antipsychotic use – a class of drugs commonly misused as sedatives for the nursing home

population, against clinical guidance. Konetzka, Brauner, Shega, and Werner (2014) find

that public reporting of only physical restraints led to an increased use of antipsychotics

among residents with severe cognitive impairments.

The second issue arises from the fact that two components of the NHC star ratings (the

staffing and quality measures) are partially derived from records the facilities themselves

submit, and suggesting substantial bandwidth for manipulation. By nature, research on this

front must be indirect, but nonetheless the findings support claims of manipulation. For

example, despite the large increases reported in staffing ratios under NHC, there was little

evidence of increases in staffing costs (Sharma, Konetzka, and Smieliauskas 2019). In light

of these shortcomings, one goal of this paper is to evaluate the correlation between NHC

star ratings and survival-based quality estimates.

2.3 Data

We combine a variety of administrative and public data sources from the Centers for Medicare

& Medicaid Services. The base of our analytic file is resident-level assessment data from the

Minimum Data Set (MDS) spanning 2000-2017. All CMS-certified SNFs are required to

complete regular assessments of each resident, beginning at admission. These assessments
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include a high-dimensional array of clinical and demographic information that are reported

to CMS to develop quality metrics and determine reimbursement rates. As we are interested

in mortality regardless of where the beneficiary was at the time of death,3 we merge the

MDS data with the annual Medicare enrollment files, which contain each beneficiary’s home

zip code as well as their date of death, through 2017.

Patient data is supplemented by several public datasets containing information on the

SNFs themselves. These include the LTCFocus files, which collect facility-level character-

istics (such as location, size, and ownership status) from administrative sources, as well as

the quarterly NHC 5-Star Ratings.4 To examine the relationship between SNF quality and

Covid-19 outcomes, we collect the cumulative number of confirmed cases and deaths through

December 19th, 2021 in addition to the resident and staff vaccination rates, available from

CMS.5

2.4 Sample Construction

As we study survival to 90 days after admissions, when constructing our analytic sample we

make use only of information available on the initial admission MDS assessment. We identify

all new nursing home admissions, defined as no prior admission assessment at any SNF in

the prior 365 days. Further, we restrict the assessments to patients who are enrolled in the

Medicare program, which is required to track mortality and residence prior to admission. We

define each patient’s choice set as the 100 nearest within-state SNFs to their home zip code

centroid.6 We exclude any admissions to nursing homes outside the choice set, including

travel to any out-of-state SNFs. This restriction drops 4.5% of the sample. To increase

statistical power while allowing time-varying quality estimates, we estimate the model over

4-year bins. This procedure leaves us with facility-level estimates for the year-bins 2001-2004,

2005-2008, 2009-2012, and 2013-2016, across each state separately.

All together, these restrictions leave us with a sample of 20,538,183 new nursing home

admissions across all state-year-bins. Summary statistics are given in Appendix Table E.1.

Reflecting the overall demographics of the nursing home population, our sample is dispro-

portionately white (86.1%), older (average age 79.3), traveled 7.8 miles to their admitting

SNF, and have an average 90 day survival rate of 85.8%.

3. For instance, a resident may be discharged to the hospital where their death may not be recorded in
the MDS assessments.

4. The LTCFocus data are provided by the Shaping Long Term Care in America Project at Brown
University and funded in part by the National Institute on Aging (1P01AG027296).

5. The latest available data at the time of download from https://data.cms.gov/covid-19/covid-19-nursing-
home-data.

6. Our quality estimates are robust to alternative choice sets: we find a 0.984 correlation between our
main estimates and those recovered when imposing J = 50 (Appendix Figure E.1).
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3 Model of Nursing Home Quality

To accommodate the potential for endogenous selection, we specify the following two-index

model that is similar in spirit to Geweke, Gowrisankaran, and Town (2003) and Hull (2020).

3.1 Model Set-Up

A patient i who chooses SNF j has a latent health index, hij, that depends on j’s quality βj,

patient demographics and comorbidities Xi and a health shock εij. The potential outcome

(90-day survival) of patient i at SNF j is Yij. These are expressed as:

hij = βj + γXT
i + εij (1)

Yij = 1 [hij > 0] (2)

Patients do not choose SNFs at random. Instead, they choose the SNF that yields the

highest utility, uij, defined as:

uij = ξj + πZT
ij︸ ︷︷ ︸

δij

+ηij (3)

Where ξj parametrizes constant SNF popularity and Zij is a vector of utility shifters. Most

important among these is the geodetic distance between patient i and SNF j.7 Maximization

of this latent utility index over choice of j yields the patient’s choice indicator, equal to one

if patient i chooses SNF j, zero otherwise:

Dij = 1 [uij > uik,∀k ̸= j] (4)

We model selection as a facility-specific correlation between the preference shock ηij and

the health shock εij.
8 We assume that the shocks are jointly normally distributed with

mean zero, unit variance and covariance αj. Specifically, define the health shock as εij =

αjηij +
√

1− α2
j ε̃ij where ηij and ε̃ij are independent standard normal random variables.9

Notice that because the probability of selecting SNF j is increasing in ηi,j, facilities with

higher draws of αj will have more favorable ‘unobserved’10 selection.

7. Here we draw upon the vast literature in health economics documenting a strong preference for prox-
imity when selecting providers.

8. Notice that the scale of the latent indices hij and uij is unidentified. Therefore, without loss of generality
we normalize the scale of the shocks to one: σε = ση = 1, to mirror a conventional probit model.

9. This common independence assumption is nonetheless a substantial modeling restriction, as it may
imply unrealistic substitution patterns. However, it is unclear how violations of this restriction would impact
our subsequent estimates of βj .
10. Specifically, unobserved in patient characteristics Xi.
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3.2 Econometric Framework

Estimation requires evaluating the log-probability of both the observed choices and survival

outcomes. Typically, estimation of discrete choice models relies on the existence of closed-

form probabilities, which our model does not produce. Instead, our approach starts by

observing that, conditional on the structural parameters and, crucially, the realized prefer-

ence shock for the selected SNF ηi,j(i), the log-probabilites take a simple form:

logP (Dij = 1 | θi, Xi, Zi) = Σj′ ̸=j(i) log Φ(δij(i) − δij′ + ηij(i)) (5)

logP (Yi,j(i) = 1 | θi, Xi, Zi) = log

1− Φ

−(βj(i) + γXT
i + αj(i)ηi,j(i))√

1− α2
j(i)

 (6)

where θi := (β, α, γ, ξ, π, ηi,j(i)) is a vector that stacks all of the parameters we estimate,

δij is the observed component of the utility defined in Equation (3), and Φ is the standard

normal cumulative distribution function. Appendix B contains the derivations and further

details.

This approach bears resemblance to a Heckman correction, as we model the selection

problem instead as an omitted variable problem (Heckman 1979). Moreover, we reduce the

high-dimensional selection problem (a preference shock for each SNF in the choice set) to a

single, sufficient, estimable parameter for each individual (the value of the preference shock

for only the chosen SNF). The quantities in equations (5) and (6) are easy to compute.

By conditioning on the value of ηi,j(i) we only need to evaluate the CDF of the univariate

standard normal, for which highly efficient, differentiable approximations exist. While this

comes at the cost of estimating ηi,j(i) for each individual, with VI we are able to easily

estimate a model in which the number of parameters grows linearly with the sample size.

When estimating quality, one commonly needs to account for few observations in some

facilities, which may lead to noisy quality estimates. To accommodate this, we use Bayesian

inference. We specify the priors in Appendix Section B.2. Importantly, we use hierarchical

priors for the quality parameters βj, which implicitly regularize the quality estimates to-

wards the mean, increasing reliability especially for small SNFs. Empirical Bayes methods

commonly used in quality estimation (e.g. Chetty, Friedman, and Rockoff 2014; Chandra,

Finkelstein, Sacarny, and Syverson 2016) can be viewed as first-order approximation to the

hierarchical model and it can be shown that the difference between estimates is of the order

O(J−1) (Kass and Steffey 1989). The advantage of the hierarchical model is that it ensures

that the prior variance on the quality parameters is estimated and guaranteed to be con-

sistent with the across-facility posterior variance, which is not the case for empirical Bayes
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methods (Gelman 2014, Chapter 5).

4 Estimation with Variational Inference

Estimating a choice model such as ours over a large number of admissions (more than 20

million) is computationally challenging. One common solution to relieve the computational

burden is to estimate separately across narrowly defined geographic markets. This solution

imposes strict assumptions on patients’ choice sets, resulting in limited substitution pat-

terns between nursing homes. In addition to the statistical efficiency concerns from losing

observations, in our setting it is possible that patients who travel farther into other markets

may not be representative of all patients who select a given facility, giving rise to potentially

biased estimates. We relax this assumption by defining large person-specific choice sets, as

we do not need to impose narrow geographic markets to ensure tractability.

Defining such rich choice sets allows us to include many more observations in our esti-

mation; however, doing so is computationally taxing, as each new observation brings with it

another parameter (the shock ηij(i) for the chosen SNF). Given the size of our data, conven-

tional approaches, such as an MCMC sampler, are computationally infeasible. As such, we

use variational inference (VI), a technique from the machine learning literature commonly

employed for efficiently estimating complex, high-dimensional Bayesian models in which the

number of parameters often stretches into the millions. The fundamental idea of VI is to

reframe the estimation problem as one of optimization rather than sampling, instead using

an approximation of the posterior distribution p(θ|x) for each parameter θ given the data x.

4.1 Overview of Variational Inference

Estimating an economic model via variational inference is very rare, and so many readers

may be unfamiliar with the approach. As such, we provide a quick overview of the method,

with a fuller description available in Appendix Section A.

To implement VI, the researcher starts by specifying a family of distributions QΨ (e.g. the

family of normal distributions) indexed by a parameter ψ ∈ Ψ (e.g. ψ = (µ, σ2), the mean

and variance). She then searches over possible values of the parameters ψ so as to minimize

the ‘distance’ between the posterior p(θ|x) and the approximating distribution q(θ|ψ) ∈ QΨ.

The distance between these two distributions is measured by the Kullback-Leibler divergence,
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which is defined as:

KL
(
q(θ|ψ)||p(θ|x)

)
=

∫
q(θ|ψ) log q(θ|ψ)

p(θ|x)dθ

= Eq[log q(θ|ψ)− log p(θ|x)].
(7)

The resulting optimization problem is:

ψ∗ = argmin
ψ∈Ψ

Eq[log q(θ|ψ)− log p(θ|x)]

s.t. q(θ|ψ) ∈ QΨ

(8)

The ‘trick’ which enables this optimization follows from Bayes’ rule. While it is straight-

forward to compute log q(θ|ψ), the researcher still needs to compute the true posterior

log p(θ|x). Notice that log p(θ|x) = log p(θ, x) − log p(x). The first term, the joint density

of data and parameters, is easily computed. The second term, log p(x), is computationally

intractable, but because it is invariant to ψ may be safely ignored in optimization.

VI offers several potential benefits for estimating economic models. Primarily, as an

optimization-based approach it typically achieves faster convergence than traditional sampling-

based approaches (Blei, Kucukelbir, and McAuliffe 2017). This improvement in computation

time is largely owed to recent advancements in optimization, such as automatic differentiation

and massive parallelization. Additionally, VI is a very flexible inference algorithm. Minimal

model-specific derivations are necessary, enabling researchers to easily estimate variations

of their model. For example, they can add parameters or modify distributions without en-

countering substantial difficulties, allowing one to assess result sensitivity to functional form

assumptions.

There are applications for which VI may be less appropriate than sampling-based ap-

proaches. While MCMC methods tend to be slower, they are asymptotically exact. VI is

an approximation method, the quality of the which depends on several factors, including

the choice of the approximating distribution QΨ, which introduces some limitations. For

instance, while the point estimates are guaranteed to be consistent, VI may underestimate

the posterior variances (more on this below). This suggests that VI is well-suited for large

datasets, applications for which the point estimates are of primary interest, and cases in

which MCMC methods are computationally infeasible. Of course, if one finds that exact

methods do not pose a computational problem, using such approaches is advisable.
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4.2 Implementation Details and Simulation Results

We employ a common variant known as mean-field variational inference. In this approach,

the approximating distribution is taken to be fully factorized, i.e. q(θ|ψ) =
∏N

i=1 q(θl|ψl),
where θl represents the lth element of the θ vector. For all parameters that are defined on

the real line, we select the normal distribution as the approximating distribution. As for the

parameters αj, which are constrained to the interval [−1, 1], we utilize a beta distribution

after applying an appropriate transformation. Lastly, for the variance of βj, a hierarchical

parameter, we opt for a gamma distribution. It is worth pointing out that the prior distri-

butions we use are members of the same family as the approximating distributions. This

choice is not necessary, but it simplifies the optimization problem due to the fact that the

KL divergence between two distributions from the same family can usually be computed

analytically.11

The mean-field assumption greatly simplifies the optimization problem but is not without

tradeoffs. Specifically, while the point estimates we obtain are guaranteed to be consistent,

the posterior variances may not be (Wang and Blei 2019). We explore these theoretical issues

in a simulation exercise.

In the simulations, we generate data in a manner that ensures certain parameters exhibit

high correlation in the posterior, thereby pressuring the assumption of fully factorizable

approximating distributions. Nonetheless, we find that the point estimates obtained using

VI are close to both their true values and to estimates obtained using an MCMC algorithm

more common to economics (NUTS, Hoffman and Gelman 2014). The R2 from a regression

of the true βj on the estimated values is equal to 0.86 while the R2 from regressing those VI

estimates on their MCMC-based equivalents is 0.99. However, for parameters with strong

posterior correlations, the VI-based posterior variance is smaller than the asymptotically

exact sampling-based posterior variance.

Underestimating the posterior variance, while important, is not a major concern in our

application as we are primarily interested in point estimates of the quality parameters βj and

we do not conduct hypothesis tests on the intermediary parameters. In addition, the size of

our data implies that the posterior distribution on those parameters is likely to be highly

concentrated anyway, so any approximation error would be unlikely to meaningfully affect our

conclusions. In Appendix Section A.6 we provide further simulation details, and demonstrate

that partially relaxing the mean-field assumption can significantly improve estimates of the

posterior variances for cases in which the size of the credible intervals may be of greater

importance.

11. If the analytic form of the KL divergence is not available, it can be approximated numerically, but this
slows down the optimization process.

11



5 Identification

Estimating our model presents two identification challenges. First, patients may endoge-

nously sort across facilities based on their unobserved health status. We follow the literature

and employ an instrumental variables approach. In particular, we use the geodetic distance

between each patient’s home zip code centroid and coordinates for each nursing home in

the patient’s choice set, exploiting the well-established patient preference for nursing facil-

ities close to their home (Grabowski et al. 2013).12 The identification assumption here is

standard: conditional on the risk-adjustors Xi, the distance instruments Zi are uncorrelated

with the idiosyncratic health shock εi, and act only to shift preferences towards specific

facilities. These instruments help to combat endogenous sorting of patients to particular

facilities based on unobserved health status, for instance due to the specialization detailed

in Section 2.

Second, because the geographic distribution of health is far from uniform, we also utilize

the rich assessment data to incorporate a battery of risk-adjustors Xi in equation (1), so

as to allow patients to vary in observed health status. Furthermore, to capture residual

geographic variation in unobserved health status, in all our downstream exercises examining

variation in facility quality, we include hospital referral region (HRR) fixed effects. This

multi-pronged approach accounts for both mean differences in health across regions, as well

as endogenous sorting of patients within an area.

While the exclusion restriction is untestable (we cannot examine the relationship be-

tween the instruments and the unobserved patient risk εi), we can informally assess it by

examining how the instrument covaries with the risk-adjustor, Xi. A flat relationship would

provide suggestive evidence in support of the exclusion restriction, under the assumption

that observed and unobserved patient risks are correlated.

The high-dimensional nature of the instruments (one for each facility in the choice

set) complicates efforts to visualize the relationship between the instruments and the risk-

adjustors. To address this, we construct a unidimensional differential distance measure,

defined as the difference between the distances to each patient’s nearest high- and low-

quality facilities, respectively. High-quality facilities are those whose β̂jt estimate is above

the median for that state-year bin, and low-quality facilities are those whose estimate is

below the median.

Figure 1 demonstrates the results of this exercise. The top panel examines instrument

relevance: we find that patients who are relatively closer to high-quality facilities are sig-

nificantly more likely to enter such a facility. In the bottom panel, we plot ex ante patient

12. The mean distance traveled to a facility is 12.6 km.
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risk (aggregated into a single predicted 90-day survival using the risk-adjustors Xi) along-

side the differential distance measure. The figure reports a flat relationship, consistent with

prior studies (e.g. Gupta, Howell, Yannelis, and Gupta 2021). To benchmark this result, a

10km increase in differential distance decreases predicted 90-day survival by less than 0.009

percentage points. In contrast, the same change would decrease the probability of entering

a high-quality nursing home by 20.8 percentage points.

We also summarize these results in Appendix Table E.2, utilizing a binary measure of

differential distance, defined as being relatively closer to high- or low-quality facilities. While

we find that some patient characteristics do vary across the two groups, the magnitudes are

quite small, and importantly the predicted 90-day survival rates between the two groups are

indistinguishable. Despite this similarity in reported health status, we do find that patients

who are relatively closer to high-quality facilities observe significantly higher survival rates,

suggesting this result is not owed to a lack of statistical power.

6 Correlates of Quality

6.1 Parameter Estimates

Because we estimate the model separately across state-year-bins, for all subsequent exercises

we standardize the quality estimates within-market and denote the standardized estimates

as β̂jt, such that a SNF with β̂jt = 1 has quality that is one standard deviation above the

mean for that state-year-bin. For comparison, we also construct quality estimates using

a conventional risk-adjustment approach, which we recover by imposing no selection-on-

unobservables (α = 0) in the model estimation.13 We denote these non-selection-adjusted

estimates as β̂NAjt .

We find a moderate correlation of ρ = 0.481 between the model estimates β̂jt and the

non-adjusted estimates β̂NAjt (Appendix Figure E.2, top panel). This imperfect correlation

suggests that unobserved selection is non-trivial – i.e., that there is a role for the distance

instruments. Indeed, assessing the correlation between SNF quality β̂jt and unobserved

selection α̂jt, we find a sharp negative relationship (ρ = −0.32, Appendix Figure E.2, bottom

panel). This negative relationship indicates a traditional adverse selection mechanism: the

sickest patients (lowest hij) have stronger preferences for higher quality SNFs. Because

we model travel distances, rather than prices, this result implies that sicker patients travel

farther for high-quality SNFs.

Appendix Table E.3 reports univariate regressions of β̂jt and β̂NAjt on several facility

13. This approach maintains the Bayesian shrinkage of our estimation routine.
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characteristics, adjusted for HRR-year fixed effects. Reassuringly, we find that measures of

staffing are positively correlated with β̂jt. Ignoring unobserved selection (β̂NAjt ), we find that

for-profit facilities have lower quality, and facilities with specialized Alzheimer’s units have

higher quality. However, when adjusting for selection (β̂jt), these relationships disappear,

suggesting that unobserved patient composition underlies the results. Overall, we find that

very little of the variation in β̂jt can be explained by the characteristics of patients or facilities.

A regression of β̂jt on all of the facility and patient characteristics in Table E.3 has an R2 of

only 0.10.

6.2 Performance of Nursing Home Compare

Table 1 summarizes the findings on the relationship between SNF quality and the Nursing

Home Compare star ratings. We conduct the analysis separately for the selection-adjusted

estimates β̂jt (columns 1-4) as well as the non-adjusted estimates β̂NAjt (columns 5-8). Each

column represents the coefficients of a regression of quality β̂jt on the overall rating, as well as

the component ratings for facility inspections (‘Survey’), patient-based measures (‘Quality’),

and overall levels of nurse and nurse-aid staffing (‘Staffing’). Partial correlations between

the component ratings and β̂jt, adjusted for geographic fixed effects, are also included. All

specifications include HRR-by-year-bin fixed effects.14 We assign the median star rating for

each period. The star ratings were introduced in 2009, and so we include estimates only for

the last two year-bins (2009-2012, 2013-2016).

There is startlingly little relationship between the estimates of quality β̂jt and the NHC

measures. We find a within-HRR correlation of only 0.005. The estimates in Table 1 suggest

that moving from a 1-star to 5-star facility corresponds to an increase in quality of only 0.06

standard deviations. The only NHC rating component across which β̂jt is monotonically

increasing is the ‘Quality’ rating, which aggregates patient-based quality metrics (derived

from the MDS and Medicare claims), but even in this best-performing component, the partial

correlation is only 0.084. In contrast, the non-adjusted quality estimates are much more

strongly correlated with the NHC ratings. We find a partial correlation of 0.166 between the

Overall Rating and β̂NAjt , suggesting that our results are not driven by a negligible correlation

between facility mortality and the NHC ratings.

To examine the magnitude of these results, we conduct a counterfactual exercise in which

we replace the ‘Quality’ component of the NHC Overall rating with our quality estimates.15

14. More precisely, because some HRRs cross state boundaries and β̂jt is standardized within-state, we
instead construct HRR-by-state indicators.

15. We construct five bins of β̂jt whose size equal that of the Quality ratings by state, which are then used
to compute the Overall Rating in lieu of the Quality component.
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We find that doing so would downgrade approximately 27% of 5-star facilities to 3-4 stars,

and upgrade only 20% of 1-star facilities to 2-3 stars (Appendix Table E.4).

7 Quality and Covid-19

The Covid-19 pandemic has been particularly devastating for nursing home residents, as

SNFs have been centers of outbreak and excess mortality since the start of the crisis. In the

wake of the pandemic, a flurry of recent research has sought to examine the determinants

of Covid-19 spread in nursing homes, with a particular focus on whether higher quality

SNFs performed better in preventing adverse outcomes. Konetzka et al. (2021) provide a

systematic review of the literature, and find that there is no relationship between the NHC

star ratings and various Covid-19 outcomes. The authors conclude that there is little that

SNFs could have done to avert severe outcomes.

Given the lack of correlation between SNF quality β̂jt and the star ratings documented

in Section 6.2, it is possible that the relatively poor performance of higher rated SNFs is

instead due to shortcomings in conventional metrics. We ask whether higher quality SNFs,

as measured by β̂jt, fared relatively better during the first 21 months of the pandemic.

Considering the 3-year lag between last of our year-bins (ending in 2016) and the beginning

of the Covid-19 pandemic, we first verify that the estimates of β̂jt are highly stable across

time: the AR(1) regression coefficient of β̂jt across year-bins is 0.804 (Appendix Table E.5).

Figure 2 presents binned scatter plots of Covid-19 resident cases and deaths by SNF

quality β̂jt from the latest available year-bin, 2013-2016. Due to the geographic variation in

Covid-19 spread, we adjust the figures for HRR fixed effects.16 Given the mechanical rela-

tionship between size and counts of Covid-19 cases, we follow McGarry, Barnett, Grabowski,

and Gandhi (2022) and calculate the number of cases and deaths per bed. The figure suggests

that higher quality SNFs experienced lower rates of both Covid-19 cases and deaths.

Given the negative relationship between β̂jt and Covid-19 outcomes observed in Figure

2, we ask whether any omitted variables may explain these results. To assess the extent of

this possibility, we run a series of regressions of the following form:

yj = λ1β̂jt + λXT
j + µm(j) + ϵj (9)

where yj is one of several Covid-19 outcomes, XT
j is a vector of facility characteristics,

µm(j) denotes geographic (HRR or county) fixed effects, and β̂jt is the quality estimate. We

16. In a robustness exercise, we also consider narrower geographic fixed effects (county-level) and find
similar results (Appendix Figure E.3). A significant number of SNFs operate as the only facility in the
county, however, and are therefore dropped from this regression.
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include the NHC Overall Rating as it appeared on the website in December 2019. We also

include measures of size, the mean household income for the zip code, for-profit ownership

and chain membership, the presence of an Alzheimer’s unit, and whether the SNF is located

in a hospital. We consider several Covid-19 outcomes, including the cumulative number of

confirmed resident cases/deaths per bed, as well as staff and resident vaccination rates.

Table 2 presents the results from these regressions for several Covid-19 outcomes. We

consider four specifications. In column (1), we replicate the regressions underlying the bin-

scatters in Figure 2, and adjust only for HRR fixed effects. In column (2), we include the

NHC Overall Rating. Column (3) includes each of the additional controls contained in Xj.

Column (4) replaces the HRR fixed effects with county fixed effects.

Consistent with prior literature, we find that the 2019 NHC Overall Rating is not pre-

dictive of resident Covid cases or deaths, though vaccination rates increase with facilities’

ratings. In contrast, we find that β̂jt significantly predicts resident cases and deaths, and

is stable across specifications. Facilities with a one standard deviation higher value of β̂j

had 2.5% fewer cases and 3.4% fewer deaths due to Covid-19. We find evidence that higher

quality SNFs also vaccinated their staff and residents at higher rates, though these estimates

are more sensitive to the choice of controls. While these results explain relatively little of

the overall variation in Covid-19 outcomes, they suggest that the reported non-correlation

between quality and Covid-19 outcomes is partially due to inadequate measures of quality.

Appendix Table E.7 replicates Table 2, replacing the model estimates β̂jt with their non-

selection-adjusted counterparts β̂NAjt . While β̂NAjt continue to predict both resident and staff

vaccination rates, there is strikingly little correlation with resident cases or deaths. Indeed,

in contrast to the main table, we find that facilities with higher naive quality estimates

actually fare worse along the dimension of staff cases. Similarly, in Appendix Figure E.4 we

overlay the relationship between β̂NAjt and Covid-19 outcomes on the binscatters presented

in Figure 2, and find a flatter relationship.

8 Conclusion

The low quality of care provided at nursing homes has long posed a challenge to policy-

makers. In this project, we propose a new method of estimating SNF quality. Applying

the method to the universe of SNF admissions, we find that conventional quality measures

have near-zero correlation with our survival-based approach, and that facility. We also find

that higher quality SNFs have fared better during the Covid-19 pandemic, in contrast to the

medical consensus. Our results are informative for assessing the performance of conventional

quality measures in addition to understanding heterogeneity in the impact of the pandemic.
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Finally, our novel methodology provides a blueprint for estimating otherwise intractable

high-dimensional economic models.
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9 Tables and Figures

(a) Probability of entering high-quality nursing home
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(b) Predicted 90-day survival
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Figure 1: Patient Characteristics by Differential Distance to High Quality Nursing Home

Notes: Figures explore the exogeneity and relevance assumptions of the distance instruments. ‘High-quality’

nursing homes are defined as those whose β̂j estimate is above the median for each state-year bin. Top

panel presents a binned scatterplot of predicted 90-day survival by differential distance to the nearest high

quality nursing home and nearest low-quality nursing home. The flat relationship indicates that patients

who are relatively closer to high-quality nursing homes appear similar on ex ante mortality risk, based on

observables. Bottom panel presents the probability of entering a nursing home with above-median quality

by differential distance. Both are adjusted for hospital referral region fixed effects.
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(a) Cumulative Covid-19 resident cases per bed
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(b) Cumulative Covid-19 resident deaths per bed
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Figure 2: Covid-19 Outcomes by Nursing Home Quality Estimates β

Notes: Figures establish the negative relationship between nursing home quality in 2013-2016 and Covid-19

outcomes through 2021. Top panel presents a binned scatterplot of cumulative confirmed Covid-19 cases

per bed through December 19, 2021 by nursing home quality β̂j estimated in the last available year-bin,

2013-2016. Bottom panel presents Covid-19 deaths per bed by nursing home quality. Both are adjusted for

hospital referral region fixed effects.
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(a) Selected-Adjusted Quality Estimates β̂jt (b) Non-Adjusted Quality Estimates β̂NAjt

(1) (2) (3) (4) (5) (6) (7) (8)

Overall Survey Quality Staffing Overall Survey Quality Staffing

2-Star -0.0263 -0.0856*** 0.0824** -0.0205 0.0910*** 0.0963*** 0.0762** 0.0398

(0.0195) (0.0164) (0.0255) (0.0216) (0.0188) (0.0167) (0.0294) (0.0212)

3-Star -0.0921*** -0.136*** 0.128*** -0.0295 0.193*** 0.189*** 0.149*** 0.0770***

(0.0199) (0.0174) (0.0251) (0.0218) (0.0197) (0.0176) (0.0289) (0.0212)

4-Star -0.0738*** -0.109*** 0.208*** 0.000206 0.315*** 0.323*** 0.238*** 0.178***

(0.0204) (0.0186) (0.0253) (0.0225) (0.0207) (0.0194) (0.0288) (0.0227)

5-Star 0.0609** -0.0249 0.288*** 0.134*** 0.563*** 0.451*** 0.433*** 0.320***

(0.0235) (0.0257) (0.0278) (0.0310) (0.0250) (0.0293) (0.0314) (0.0376)

Observations 28738 28738 28738 28668 28738 28738 28738 28668

Partial R2 .0035 .0032 .0071 .0021 .0292 .0184 .0143 .0067

Partial ρ .005 -.026 .084 .024 .166 .135 .114 .077

Table 1: Regressions of Quality Estimates on Nursing Home Compare 5-Star Ratings

Notes: Table establishes the weak correlation between nursing home quality and public report cards. Panel

(a) reports regressions of standardized SNF quality estimates β̂jt on each component of the Nursing Home

Compare 5-Star ratings with HRR by year-bin fixed effects. Panel (b) reports the same regressions using

the non-selection-adjusted quality estimates (i.e., those recovered when imposing α = 0, analogous to a

conventional risk-adjusted mortality approach). The mean of β̂jt is zero. Partial R2 reports the fraction of

the variance in β̂jt explained by the star ratings, conditional on the fixed effects. Partial ρ is the partial

correlation between the star ratings (as continuous variables) and quality β̂jt, conditional on the fixed effects.

We include estimates only for the 2009-2012 and 2013-2016 year-bins, due to availability of the star ratings.

Standard errors in parentheses are all clustered at the facility-level. *p < 0.05, **p < 0.01, ***p < 0.001.
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(1) (2) (3) (4)

(a)

Resident Cases

Per Bed

SNF Quality β̂jt -0.0102*** -0.0106*** -0.0100*** -0.0118**

(0.00274) (0.00275) (0.00277) (0.00395)

2019 NHC Rating -0.00667*** 0.00174 0.00367

(0.00178) (0.00188) (0.00210)

Mean 0.482 0.482 0.482 0.480

Observations 13160 13087 13074 12245

(b)

Resident Deaths

Per Bed

SNF Quality β̂jt -0.00185* -0.00184* -0.00236** -0.00308*

(0.000860) (0.000863) (0.000886) (0.00122)

2019 NHC Rating 0.000132 0.000851 0.00116

(0.000565) (0.000606) (0.000695)

Mean 0.0911 0.0912 0.0912 0.0910

Observations 13160 13087 13074 12245

(c)

Staff Cases

Per Bed

SNF Quality β̂jt -0.00885*** -0.00820*** -0.0111*** -0.0138***

(0.00226) (0.00220) (0.00217) (0.00300)

2019 NHC Rating 0.0343*** 0.0209*** 0.0223***

(0.00148) (0.00143) (0.00159)

Mean 0.467 0.467 0.467 0.465

Observations 13160 13087 13074 12245

(d)

Vaccinated

Residents, %

SNF Quality β̂jt 0.264* 0.311** 0.0621 0.445**

(0.102) (0.101) (0.100) (0.146)

2019 NHC Rating 1.509*** 1.219*** 1.296***

(0.0723) (0.0746) (0.0851)

Mean 87.25 87.26 87.26 87.22

Observations 13158 13085 13072 12247

(e)

Vaccinated

Staff, %

SNF Quality β̂jt 1.395*** 1.447*** 1.282*** -0.137

(0.141) (0.139) (0.140) (0.186)

2019 NHC Rating 1.513*** 1.289*** 1.382***

(0.0919) (0.0955) (0.103)

Mean 78.23 78.25 78.25 78.56

Observations 13163 13090 13077 12251

Additional Controls No No Yes Yes

HRR FEs Yes Yes Yes No

County FEs No No No Yes

Standard errors in parentheses

* p < 0.05, **p < 0.01, ***p < 0.001

Table 2: Regressions of Covid-19 Outcomes on Nursing Home Quality Estimates

Notes: Table reports regressions of several Covid-19 outcomes on several facility characteristics. SNF quality

estimates β̂j are from the last available year-bin, 2013-2016. The Nursing Home Compare Overall Rating

is as it appeared on the website in December 2019. Additional controls include the log of mean household

income for the SNF’s zip code, log number of total beds, and indicators for the for-profit status, chain

membership, the presence of an Alzheimer’s unit, and whether the SNF is hospital-based. Standard errors

in parentheses are all clustered at the facility-level. 22



A Details on Variational Inference

A.1 Overview of Variational Inference

Here we provide a more detailed overview of variational inference. Readers interested in a

more in-depth treatment should refer to Blei, Kucukelbir, and McAuliffe (2017).

The goal of Bayesian computation is to estimate p(θ|x), the posterior density of the

parameters of the model, θ, given the data, x. By Bayes’ rule this is proportional to the

joint density of data and parameters,

p(θ|x) = p(θ, x)

p(x)
(10)

For a given prior, p(θ) the numerator in (10) is easily computed since p(θ, x) = p(x|θ)p(θ),
where p(θ) is the prior density. However, the denominator is generally computationally

intractable.

Variational inference starts by postulating a parametrized family of distributions:

QΨ = {q(θ|ψ) ∀ψ ∈ Ψ}

It then approximates the posterior density in (10) by finding a member of QΨ that minimizes

the distance between p(θ|x) and q(θ|ψ). Given a family of distributions the goal is then to

find ψ⋆ that minimizes the distance, measured by the Kullback-Leibler divergence, between

the posterior and the approximating distribution:

ψ∗ = argmin
ψ∈Ψ

KL(q(θ|ψ)||p(θ|x)), (11)

where KL divergence is defined as

KL(q(θ|ψ) || p(θ|x)) =
∫
q(θ|ψ) log q(θ|ψ)

p(θ|x)dθ

= Eq[log q(θ|ψ)− log p(θ|x)].
(12)

The quantity in (12) is not computable as it still involves the constant, p(x). However,

for the purpose of optimization, the constant can be ignored as its value does not depend

on ψ. The resulting objective function, known as the Evidence Lower Bound (ELBO), is

obtained by subtracting the log evidence, p(x) from the KL divergence and switching the

sign.
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ELBO(ψ) := log p(x)−KL(q(θ|ψ) || p(θ|x))
= log p(x) + Eq[log p(θ|x)− log q(θ|ψ)]
= log p(x) + Eq[log p(θ, x)− log p(x)− log q(θ|ψ)]
= Eq[log p(θ, x)]− Eq[log q(θ|ψ)]

(13)

Notice that maximizing the ELBO is equivalent to minimizing the KL divergence. That is,

ψ∗ = argmin
ψ∈Ψ

KL(q(θ|ψ)||p(θ|x)) ⇐⇒ ψ∗ = argmax
ψ∈Ψ

ELBO(ψ). (14)

A typical tradeoff in Bayesian computation is that (a) the parameters with a high pos-

terior density should be good at fitting the data, and (b) the posterior distribution of pa-

rameters should be close to the prior. This tradeoff can be easily seen by rewriting (13)

as

ELBO(ψ) = Eq[log p(θ, x)]− Eq[log q(θ|ψ)] = Eq[log p(x|θ)]−KL(q(θ|ψ) | p(θ)).

The first term in the equation above ensures that the parameters fit the data, while the

second ensures that the approximate posterior q(θ|ψ) is as close as possible to the prior p(θ).

A.2 Use of Variational Inference in Economics

Variational inference and related approaches have long been popular in computer science

(see Jordan, Ghahramani, Jaakkola, and Saul 1998). It has been used, for instance, to

estimate the Latent Dirichlet Allocation model (Blei 2003) which is now popular among

economists who use text data. Despite this popularity, there are few instances of the use

of VI for estimating economic models. Notable exceptions include Bonhomme (2021) (team

production) and Mele and Zhu (2021) (network formation). There are also several examples

at the intersection of economics and computer science including Ruiz, Athey, and Blei (2020)

(demand) and Vafa, Naidu, and Blei (2020) (polarization in text). One reason for this limited

adoption may be that, until recently, there have been few theoretical results on the statistical

properties of the approach. However, recent work (Wang and Blei 2019; Medina, Olea,

Rush, and Velez 2021) established appealing properties of the approach regarding asymptotic

behavior and robustness to model mis-specification. It is worth noting that VI has a great

potential in terms of scalability (though massive parallelization and data-subsampling) and

can benefit from modern specialized hardware (GPUs/TPUs). We anticipate that VI may

see widespread adoption by economists in the near future.
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A.3 Implementation

The parameters whose posterior distributions we estimate are: (a) the parameters of the

choice model ((ξj)j∈J , π), (b) the parameters of the survival model ((βj)j∈J , γ), (c) the

selection parameters (αj)j∈J and (d) the preference shocks for the selected SNFs ((ηi,j(i))i∈I).

Each of these parameters receives a variational family that we describe in the subsequent

section. All the parameters of the variational families are collected into a single vector ψ.

The joint log-probability of the model given the parameters is given by

log p(θ, x) =
∑
i

(log p(xi|θ)) + log p(θ) =
∑
i

(
logP (Yi,j(i)|θ) + logP (Di,j(i)|θ)

)
+ log p(θ),

(15)

where p(θ) is the prior density of the parameters. We use independent priors for each

parameter so log p(θ) =
∑

i log p(ηi,j(i))+
∑

j log p(βj)+
∑

j log p(ξj)+
∑

j log p(αj)+log p(γ)+

log p(π). Likewise, we use a factorizable variational family so the approximate posterior

density of the parameters is given by

log q(θ|ψ) =
∑
i

log q(ηi,j(i)|ψηi,j(i)) +
∑
j

log q(βj|ψβj) +
∑
j

log q(ξj|ψξj)

+
∑
j

log q(αj|ψαj
) + log q(γ|ψγ) + log q(π|ψπ)

(16)

We specify the ELBO using Numpyro (Phan, Pradhan, and Jankowiak 2019; Bingham

et al. 2018), a Python library for probabilistic programming. Full implementation details are

beyond the scope of this paper, though we emphasize a few key points. First, as Equations

(15) and (16) show, the ELBO is an expectation over a sum of components related to

individual observations which makes it easily parallelizable. Second, we are able to leverage

automatic differentiation to compute an unbiased estimate of the gradient of the ELBO.

This is achieved using the so-called ‘reparametrization trick’ of Kingma and Welling (2014).

This trick enables expressing the gradient of the ELBO as an expectation of the gradient

with respect to a noise distribution, τ where the density does not depend on the parameters

ψ.

∇ψELBO(ψ) = ∇ψ Eq(log p(θ, x)− log q(θ|ψ)) = Eτ (∇ψ(log p(f(ψ, τ))− log q(f(ψ, τ)|ψ))) ,
(17)

where f is the reparametrizing function.17

17. As an example, if θ ∼ N(µ, σ) then θ = µ + στ = f((µ, σ), τ) where τ is the standard normal noise
distribution. The reparametrization trick is not available for some distributions, for instance categorical
distributions.
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Consequently, we can obtain an unbiased estimate of ∇ψ ELBO(ψ) by taking draws from

the noise distribution. This is critical given the dimension of the parameter space (which in

our model scales linearly with the sample size), so gradient-free optimization methods are

infeasible. On the other hand, the analytic form of ∇ψ ELBO(ψ) may not exist. Fortunately,

this unbiased estimate of the gradient is sufficient to specify an algorithm that is guaranteed

to converge to a local optimum (Robbins and Monro 1951).18

A.4 Variational Families

Several factors contribute to our choice of the variational family. First, due to the number of

parameters we estimate (including the value of the preference for the selected SNF ηi,j(i)), and

the fact that in the subsequent analysis we focus on posterior means of the parameters (and

not the variance), we selected factorizable families. Second, for each parameter we chose a

family that includes the prior. For example, for each parameter whose prior is Gaussian, we

specified a Gaussian variational approximation. For αj, whose prior is Uniform, we specify

a Beta variational approximation. Finally, for the posterior scale of the hierarchical prior

we specify a Gamma variational approximation. Specifying the variational family in such

a way is not necessary, but it facilitates analytically computing the KL divergence between

the prior and the approximate posterior, which reduces the variance in the estimation of the

gradient of the ELBO and may speed up convergence.

A.5 Optimization Details

We minimize the ELBO with the Adam optimizer (Kingma and Ba 2017) using clipped

gradients (to ensure numerical stability) and geometrically decreasing step size. For a typical

state-year bin, a single Adam update step takes less than a second on a single core CPU19 and

our model converged after approximately 30 minutes to one hour, depending on the state-

year bin. The optimization of the VI objective function can further benefit from specialized

hardware (such as a GPU), but we did not implement this due to hardware limitations on

the secure server where our patient data reside.

18. This approach differs significantly from Bonhomme (2021) who instead uses a (gradient-free) variational
expectation maximization algorithm to maximize an objective function closely related to the ELBO. By
exploiting a gradient-based optimizer, our approach performs well in significantly larger parameter spaces.
19. The biggest state-year bin, California 2013-2016, contains 500k+ admissions. A single Adam update

there takes approximately 2.5 seconds and objective function converges in less than 2 hours.
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A.6 Simulation Exercises

To evaluate the performance of variational inference in our setting, we conduct a brief sim-

ulation exercise. We generate a dataset containing I = 25, 000 patients and J = 50 fa-

cilities according to the data-generating process specified in Section 3. For each facility

j ∈ {1, . . . , 50}, we sample a quality parameter βj ∼ N(0, 0.8) and a selection parameter

αj ∼ Uniform(−1, 1).

In addition, for each patient i we simulate five highly correlated risk-adjusters drawn

from a multivariate normal distribution with mean 0 and variance-covariance matrix with

values 0.09 and 0.08 on and off diagonal, respectively. We specify the coefficients on the risk-

adjusters, γ, to be a vector of ones. The instruments Zij are drawn from a Triangular(0,30)

distribution with a mode at the right end.

In addition to estimating the model with VI, we also use a state-of-the-art Markov Chain

Monte Carlo approach, the No-U-Turn-Sampler (Hoffman and Gelman 2014) implemented

in Numpyro. We run the chain for 2000 steps, split equally between warmup and sampling

and ensure that the potential scale reduction factor is close to 1 for all parameters, indicating

convergence. Given the theoretical guarantees of the NUTS algorithm, we use the posterior

mean and variance of the parameters as the benchmark against which we compare the VI

estimates.

Appendix Figure E.5 presents the results obtained with VI. We plot the estimated mean

posterior values of βj and αj against their true values. In that case the R-squared values from

regressions of the true βj and true αj on their estimated equivalents are 0.856 and 0.597,

respectively. Comparing this results against asymptotically exact MCMC-based equivalents

obtained using the No-U-Turn-Sampler we find that the estimates are virtually identical

between the two algorithms for both βj (R
2 = 0.9869) and αj (R

2 = 0.9865). This should

reassure readers that in our setting, despite being an approximate method, VI performs

extremely well and matches MCMC approach in precision.

We do not report runtimes, but in all of our experiments we observed at least a 10-fold

improvement using VI compared with NUTS, and often much larger. In our simulations

both algorithms (VI and NUTS) benefited from GPU acceleration (using a single consumer-

grade GPU, i.e. Nvidia Geforce GTX 1660 Ti) resulting in approximately 12-fold speedup

compared with the deployment on a 16-core CPU (Intel i7-1077H). Unfortunately, hardware

accelerators are not available at the secure server where our data reside. Further, despite

using the GPU, to keep runtime under two hours, we had to restrict the size of our simulated

data set to less than 10% of the size of the biggest market in the real data. We therefore

conclude that in our application even the state-of-the-art MCMC approach is prohibitively

slow, while VI converges in a reasonable time.
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These simulation results are in line with the literature examining theoretical properties

of variational inference – namely, that point estimates (such as means of the approximate

posterior distributions) are likely to be consistent estimators (in the frequentist sense) for

the parameters of interest. However, echoing Wang and Blei (2019) we warn that using too

simple a family of distributions to approximate the posterior may be undesirable. For the

purpose of hypotheses testing, the approximations may lead to Bayesian credible intervals

being incorrect. This may be a problem when the true posterior is poorly approximated by a

factorizable family, for example if it is multimodal, or the parameters are strongly correlated.

We illustrate this problem in Appendix Figure E.7, which presents the point estimates

and 95% credible intervals for the parameters on the risk-adjusters γ. Because the data were

simulated a way that the risk-adjusters are highly correlated, the true posterior distribution

for γ also features correlation. As a result, while the point estimates are very similar, the

credible intervals are too small using VI, as compared with (asymptotically exact) MCMC.

This points to a potential tradoff between computational burden and the quality of inference.

This problem should theoretically be resolved if one could use sufficiently rich families

of distributions. For example, Wang and Blei (2019) show that the family of full-rank

multivariate normal distributions have desirable asymptotic properties in that the posterior

distribution converges (in total variation) to the asymptotic distribution of an unbiased and

asymptotically normal frequentist estimator. Unfortunately, this approach is only computa-

tionally feasible when the parameter vector θ is sufficiently low-dimensional. In our scenario,

the presence of high-dimensional nuisance parameters, ηi,j(i) (the preference shocks for the

chosen SNFs) make this intractable. Nevertheless, we experimented with an intermediate

approach that mixes factorizable normal approximation for some parameters and full-rank

multivariate normal for others. We found that allowing for full-rank multivariate normal

distributions for the 5-element parameter γ is sufficient to recover credible intervals that are

virtually indistinguishable from those obtained with MCMC, while the computational time

is almost identical to using a fully factorizable family. This is a promising result, but we

warn that this approach is not guaranteed to work in all settings. We note that this approach

is similar to Bonhomme (2021) who also uses a mean-field variational approximation for the

nuisance parameters, but uses a different maximum likelihood approach for the remaining

(low-dimensional) parameters.
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B Further Model Details

B.1 Deriving Likelihoods

A necessary element in computing the VI objective, the ELBO, is the log-joint likelihood of

the data and parameters. As mentioned in the main text, we explicitly condition on and

estimate the value of the preference shock for each person for their selected facility, ηij(i).

Adding in the assumption that the shocks for different facilities are independent, we can

then express the probability that i selects SNF j as the product of the probabilities that the

utility of SNF j exceeds that of j̃, for each other facility j̃ in i’s choice set. The remaining

randomness then comes the utility shocks for those non-chosen facilities j̃, which we do not

estimate. Consequentely, the log-probability of the observed choice can be derived as:

logP (Dij = 1 | θi, Xi, Zi) = logP (uij(i) > uij′ , ∀j′ ̸= j(i) | θi)
= logP (ηij′ < δij(i) − δij′ + ηij(i), ∀j′ ̸= j(i) | θi)
= logΠj′ ̸=j(i)P

(
ηij′ < δij(i) − δij′ + ηij(i) | θi

)
= Σj′ ̸=j(i) log Φ(δij(i) − δij′ + ηij(i))

(18)

where Φ is the standard normal cumulative distribution function.

Similarly, by plugging in for our definition of the health shock εij, we can express the

log-probability of the observed survival indicator as:

logP (Yi,j(i) = 1 | θi, Xi, Zi) = logP
(
βj(i) + γXT

i + αj(i)ηi,j(i) +
√

1− α2
j(i)ε̃i,j(i) > 0 | θi

)
= logP

ε̃i,j(i) > −(βj(i) + γXT
i + αj(i)ηi,j(i))√

1− α2
j(i)

| θi


= log

1− Φ

−(βj(i) + γXT
i + αj(i)ηi,j(i))√

1− α2
j(i)


(19)

B.2 Prior Distributions

Our variational inference estimation approach does not restrict us to conjugate priors –

it is only required that the joint log-likelihood is differentiable. This restriction is mild.

While it excludes models with explicit discrete latent variables, these models can often be

parametrized to remove these latent variables, a process known as marginalization.

Starting with the quality parameters, βj, we specify a hierarchical prior βj ∼ N(µβ, σβ).
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The mean and scale of this prior are given the following prior: µβ ∼ N(0, 5), σβ ∼
Gamma(3, 1

3
). This specification implicitly regularizes (or shrinks) the quality estimates

towards the state-year bin mean, increasing reliability especially for small SNFs that have

relatively few patients. Note that the empirical Bayes methods frequently used in quality

estimation to reduce noise (e.g. Chetty, Friedman, and Rockoff 2014; Guarino et al. 2015;

Chandra, Finkelstein, Sacarny, and Syverson 2016) can be viewed as an approximation to

the hierarchical model.

For the remaining parameters we use uninformative or weakly informative priors. Specif-

ically, we use a uniform prior for the selection parameter, αj. For the coefficients on the

health (γ) and preference (π) shifters, we employ dispersed normal priors with mean zero

and scale 8. For the observed SNF popularity parameters ξj, we use a standard normal

prior. It is well-known that utility parameters are identified only up to a constant. We do

not normalize any of the ξj, instead we rely on the prior to fix the mean of these parameters.

C Sample Construction

We begin with all MDS admissions assessments for Medicare-enrolled residents during the

period 2000-2017. We further restrict these admission assessments to only those assessments

that occur within 30 days of entry. In the event that an admission spans multiple assessments,

we collect the non-missing covariates from the last assessment conducted, and we exclude

any assessments with missing information on diagnoses or the activities of daily living.

We combine the cleaned sample of admissions assessments with the Long-Term Care

Focus files; a small number of assessments are excluded at this stage if their provider numbers

do not match any active SNFs from the LTCFocus panel. We then impose several sample

restrictions. First, we require no prior nursing home admission assessments in the prior 365

days. Second, for this reason we exclude any assessments for admissions that begin prior

to 2001. Third, we exclude assessments for whom we have no home zip code or for whom

the home zip code does not align with the state code20 provided in the beneficiary summary

files. Fourth, we exclude any patients residing in Alaska, as the LTCFocus files do not

contain any Alaskan SNFs. Finally, after we pool admissions across 4-year bins, we exclude

all assessments at SNFs with fewer than 50 patients.

To construct the patient choice sets, we calculate the distance to each nursing home in the

state, for all beneficiaries in the new admissions sample. To do so we assign each beneficiary a

20. We collect the zip code ranges available in each state from the IRS: https://www.irs.gov/pub/irs-
utl/zip code and state abbreviations.pdf
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home zip code, coming from the Medicare beneficiary summary files.21 Distance is calculated

between the beneficiary’s home zip code centroid22 and the coordinates of the nursing home,

which we geocode from the address available in the LTCFocus files.

A natural concern with using zip code centroids is that our distances may not accurately

represent the true distance for each beneficiary to nursing home. This may reflect both that

a beneficiary’s residence may not be close to the centroid, as well the distinction between

geodetic and driving distance. However, the extent to which we are misattributing distance

will only bias the disutility of distance parameters in our selection equation towards zero.

The two-stage least squares equivalent is that measurement error will lead our instruments

to be weaker than they otherwise would be.

21. For long-term stays at nursing homes, it is common for a resident to update her address on file with
Social Security to that of the nursing home. To account for this, for admissions in year t, we assign the zip
code in year t− 1 if the zip code matches that of the nursing home; otherwise, we use the zip code from year
t.
22. Available at https://www.nber.org/research/data/zip-code-distance-database.
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D Comparison with Einav, Finkelstein, and Mahoney

(2022)

In this appendix, we highlight the key similarities and differences between our method and

findings and those of Einav, Finkelstein, and Mahoney (2022) (EFM).

Methodology Setting aside our use of variational inference to estimate our model, the

chief difference between the two studies is the choice of dependent variable used for estimating

facility quality. In this paper, we study 90-day survival as the sole patient outcome measure,

whereas EFM study the change in estimated health status. There are tradeoffs to both

measures, which we highlight here. Because no measure is perfect, these tradeoffs support

the complementarity of our two studies.

EFM’s outcome measure — the change in the estimated probability of discharge back to

the community — comprises a richer measure of patient health, compared to the relatively

‘extreme’ event of mortality (albeit not so unlikely in the nursing home setting). This change

in health status arguably better captures the primary role of nursing homes for the short-stay

population: to rehabilitate and discharge, rather than simply to keep alive. This measure

also nicely leverages the fact that nursing home patient health is repeatedly assessed (a

unique feature of the industry) in a way that our 90-day survival measure does not.

Nevertheless, there are several advantages to studying a straightforward and transparent

measure, such as mortality. One such advantage is that in order to measure the change in

a patient’s health status, one needs multiple measures of patient health. This requirement

introduces a second form of selection bias, as patient stays may not last long enough to

generate a second health assessment. This ‘selection-out’ is a serious issue, and one that

EFM devote considerable attention to in their estimation procedure. The advantage of our

approach is that we do not need to measure patient health a second time, and so we have

only the traditional form of selection bias (of patients across facilities), greatly simplifying

the estimation problem.

A second advantage pertains to the measurement of health status, and in particular, the

degree to which the accuracy of this measurement varies across facilities. Because health

status is unobserved, it must be first estimated using other patient observables. Measurement

error that this procedure introduces — particularly if it is heterogeneous across facilities —

may inflate the variance in the facility quality estimates, suggesting that quality varies more

across facilities than it does. Because mortality is measured directly and without error, we

circumvent the difficulties introduced by first needing to measure health status separately.

Despite the significant differences between our choice of dependent variables, we find
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similar results to EFM. That our results overlap so greatly raises our confidence in their

accuracy. We highlight these main points below.

Findings and Further Discussion Despite the differences in the choice of dependent

variable, we find remarkably similar results to those in EFM. There are some small dif-

ferences, which we highlight here. Like EFM, we find only weak relationships between

observable facility or patient characteristics and nursing home quality estimates. This is

particularly so after conditioning on HRR fixed effects, as EFM’s estimates suggest. As we

note in the main text, a regression of our quality estimates on all of the characteristics we

study in Table E.3 has an R2 of only 0.10. While there is no corresponding regression in

EFM, they note quality is largely uncorrelated to the characteristics they consider.

Both our study and EFM find very little correlation between facility quality and the CMS

public report cards. The partial correlations we estimate in Table 1 indicate a near-zero cor-

relation with the NHC ratings, whereas EFM find small but slightly positive correlations.

Given the differences in our dependent variables, as discussed above, this pattern is unsur-

prising. Because mortality is ‘downstream’ of changes in health status, it is reasonable to

expect our quality measures to have a lower correlation with facility characteristics such as

surveys and staff-based star ratings than a more intermediate measure, such as EFM’s change

in estimated health status. For instance, one might expect that higher staffing ratios should

correlate more strongly with changes in health status than mortality, even if theoretically it

should impact both.

Indeed, EFM find a slightly higher (but still small) positive correlation between their

measure and the staffing component of NHC, whereas we find a near-zero correlation. Staffing

is widely considered to be a strong indicator of facility quality, and we expect staffing to

improve patients’ health status — and, downstream of this, their survival risk. This makes

both papers’ results of a small to no correlation surprising. However, as EFM also point out,

there is evidence that nursing homes game this staffing measure by strategically up-staffing

around inspection dates, in addition to inflating their reported staffing levels (Thomas 2014).

Indeed, this is why the relationship between nursing expenditures and reported nursing

hours weakened significantly following the introduction of the star rating system (Sharma,

Konetzka, and Smieliauskas 2019).
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E Additional Tables and Figures
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Figure E.1: Robustness to Alternative Choice Set Sizes

Notes: Figure presents a binscatter plot of the market-standardized nursing home quality

parameter β̂jt computed using choice set size J = 50 and J = 100. The correlation coefficient

between the two sets of estimates is 0.984.
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(a) Binscatter of Non-Selection-Adjusted Nursing Home Quality β̂NAjt by Selection-Adjusted Nurs-

ing Home Quality β̂jt
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(b) Binscatter of Unobserved Selection α̂jt by Nursing Home Quality β̂jt
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Figure E.2: Relationships Between β̂jt, β̂
NA
jt , and α̂jt

Notes: Figure documents the relationships between the selection-adjusted quality β̂jt, the

non-selection-adjusted quality estimate β̂NAjt , and the unobserved selection parameter α̂jt.

The top panel presents a binscatter showing the positive relationship between selection-

adjusted quality and non-selection-adjusted quality. The bottom panel presents a binscatter

plot of the selection parameter α̂jt by the quality parameter β̂jt. The negative relationship

indicates the presence of adverse selection.
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(b) Cumulative Covid-19 resident deaths per bed

Figure E.3: Binscatters of Covid-19 Outcomes by Nursing Home Quality Estimates β with
County Fixed Effects

Notes: Top panel presents a binned scatterplot of cumulative confirmed Covid-19 cases per

bed through December 19, 2021 by nursing home quality β estimated in the last available

year-bin, 2013-2016. Bottom panel presents Covid-19 deaths per bed by nursing home qual-

ity. Both are adjusted for county fixed effects.
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Figure E.4: Covid-19 Outcomes by Nursing Home Quality Estimates

Notes: Replication of Figure 2, with non-selection-adjusted quality estimated β̂NAjt overlaid.

Top panel presents a binned scatterplot of cumulative confirmed Covid-19 cases per bed

through December 19, 2021 by nursing home quality β estimated in the last available year-

bin, 2013-2016. Bottom panel presents Covid-19 deaths per bed by nursing home quality.

Both are adjusted for HRR fixed effects.

37



Figure E.5: Simulation Study: VI Estimates vs. True Values
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Notes: Figure presents scatter plots of the true parameters (on the horizontal axes) and

the means of the respective posterior distributions estimated using variational inference. In

all cases we use I = 50, 000 observations, or approximately 100 observations per facility.

Figure E.6: Simulation Study: VI Estimates vs NUTS Estimates
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Notes: Figure presents scatter plots of the means of the posterior distributions estimated

with variational inference (on the horizontal axes) against their equivalents obtained with

an MCMC approach, NUTS. In all cases we use I = 50, 000 observations, or approximately

100 observations per facility.
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Figure E.7: Simulation Study: Comparison Between VI, MCMC, and full-rank VI
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Notes: Figure presents the means and 95% credible interval of the posterior distributions

of the coefficients on the 5 strongly correlated risk-adjusters. The true value for each is set

to 1 and is indicated by the dashed line. We find that while MCMC and VI recover nearly

identical point estimates, the credibility intervals for VI are under-estimated, relative to the

MCMC estimates, which are theoretically known to be exact. Adopting a full-rank approx-

imating distribution for VI successfully recovers the ‘true’ credibility intervals as estimated

by MCMC.
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Mean P10 P50 P90

Female 0.64 0 1 1

Age 79.33 66 81 91

White 0.86 0 1 1

Black 0.10 0 0 0

Number of ADLs 5.18 1 6 8

Number of Diagnoses 1.66 0 1 3

Disability 0.19 0 0 1

ESRD 0.01 0 0 0

BMI<18.5 0.08 0 0 0

BMI 18.5-24.9 0.39 0 0 1

BMI 25-29.9 0.26 0 0 1

BMI >30 0.26 0 0 1

Mortality, 30-day 0.05 0 0 0

Mortality, 90-day 0.14 0 0 1

Mortality, 180-day 0.21 0 0 1

Mortality, 365-day 0.30 0 0 1

Distance to NH (mi) 7.84 1 4 17

Observations 20538183

Table E.1: Individual summary statistics

Notes: Table reports summary statistics of the estimating sample of new nursing home

admissions. Demographics and comorbidities are derived from the admission assessment

for each stay. Disability, ESRD status, and mortality are all derived from the Beneficiary

Summary Files.
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Nearest Facility’s Quality Estimate

Patient Attribute Above Median Below Median p-value

(1) (2) (3)

Quality ≥ Median 0.638 0.249 < 0.001

Age at Entry 79.268 79.417 < 0.001

Disability 0.186 0.185 0.242

Female 0.639 0.634 < 0.001

Race: Black 0.121 0.076 < 0.001

Race: Other 0.043 0.036 < 0.001

Weight: Underweight 0.084 0.081 < 0.001

Weight: Overweight 0.261 0.265 < 0.001

Weight: Obese 0.260 0.266 < 0.001

ADL: Bath 0.928 0.930 < 0.001

ADL: Bed 0.612 0.599 < 0.001

ADL: Transferring 0.642 0.630 < 0.001

ADL: Walking 0.285 0.287 0.011

ADL: Locomotion 0.660 0.641 < 0.001

ADL: Dressing 0.680 0.667 < 0.001

ADL: Eating 0.148 0.143 < 0.001

ADL: Toileting 0.693 0.679 < 0.001

ADL: Hygiene 0.575 0.569 < 0.001

Diabetes 0.313 0.314 0.418

Alzheimer’s 0.250 0.247 < 0.001

Stroke 0.135 0.133 < 0.001

Pneumonia 0.092 0.094 < 0.001

Hip Fracture 0.085 0.085 0.101

Predicted 90-Day Survival 0.858 0.858 0.285

90-Day Survival 0.863 0.853 < 0.001

Table E.2: Patient Attributes’ Balance

Notes: Table reports the mean values of patients’ attributes with respect to the level of nurse

staffing in the facility nearest to patient’s home zip code. Specifically, we group facilities

based on whether the level of RN hours’ per patient is above or below the state-year median.

Column (1) presents the statistics for patients whose nearest facility (not necessarily the one

they selected) has an above-median level of RN staffing. The first row reports the fraction of

patients who selected an above-median facility. Patient characteristics include demographic

variables, comorbidities (ESRD status and the presence of four common conditions), and

whether the patient requires assistance with the activities of daily living. Finally, we report

the predicted and realized 90-day survival.
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Quality Estimates

(a) Selected-Adjusted β̂jt (b) Non-Adjusted β̂NAjt

For-Profit -0.00662 (0.0141) -0.0992*** (0.0137)

Chain 0.00684 (0.0119) -0.0203 (0.0117)

Alzheimer’s Unit -0.00135 (0.0154) 0.129*** (0.0143)

Hospital-Based -0.314*** (0.0243) -0.283*** (0.0288)

log(Total Beds) -0.0467*** (0.0114) 0.0672*** (0.0126)

% Occupancy 0.00204*** (0.000454) 0.00659*** (0.000470)

log(RNs/Resident) 0.0179* (0.00785) 0.0591*** (0.00991)

log(LPNs/Resident) 0.0408** (0.0131) 0.0334* (0.0148)

log(CNAs/Resident) 0.202*** (0.0196) 0.244*** (0.0220)

% White -0.0100*** (0.000373) 0.00312*** (0.000358)

% Medicare -0.00399*** (0.000375) 0.00315*** (0.000528)

% Medicaid 0.000670* (0.000279) -0.00480*** (0.000330)

Mean ADL Score 0.0258*** (0.00274) 0.0703*** (0.00301)

Mean Age -0.0192*** (0.00108) 0.0199*** (0.00116)

Table E.3: Univariate Regressions of Nursing Home Quality on Facility Characteristics

Notes: Table reports a series of univariate regressions of estimated nursing home quality

on several facility characteristics, collected from the Long-Term Care Focus files. Col-

umn (a) reports regressions on our standardized selection-adjusted quality estimates β̂jt.

Column (b) reports regressions on the non-selection-adjusted quality measure β̂NAjt . For-

profit, chain, Alzheimer’s unit, and hospital-based are each indicator variables. % Occu-

pancy, White, Medicare, and Medicaid are each scaled from 0 to 100. log(RNs/Resident),

log(LPNs/Resident), and log(CNAs/Resident) measure the log number of hours worked per

resident-days for registered nurses, licensed practical nurses, and certified nursing aides, re-

spectively. Mean ADL Score is an index of patient severity (higher values indicate that

patients require more help with activities of daily living). All regressions include HRR-

by-year-bin fixed effects. Standard errors in parentheses are clustered at the facility-level.

*p < 0.05, **p < 0.01, ***p < 0.001.
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NHC Rating Counterfactual Rating (%)

1-Star 2-Star 3-Star 4-Star 5-Star

(1) (2) (3) (4) (5)

1-Star 79.9 19.6 0.5 0.0 0.0

2-Star 12.5 68.8 18.4 0.3 0.0

3-Star 0.4 17.0 66.8 15.5 0.3

4-Star 0.0 0.4 20.7 64.9 14.0

5-Star 0.0 0.0 0.7 26.5 72.8

Table E.4: Transition Matrix from Nursing Home Compare to β̂jt-Based Ratings

Notes: Table reports the results from a counterfactual exercise in which the ‘Quality’ com-

ponent of the Nursing Home Compare Overall Rating is replaced by our estimates of β̂jt.

For each state-year-bin, we compute the share of facilities with each Quality star rating (1 to

5) and create equal-sized bins of β̂jt for that state-year-bin. We then construct new Overall

Ratings by replacing the Quality component with these β̂jt bins. Column (1) reports the

overall share of facilities with each Overall Rating. Columns (2)-(6) report the shares of

facilities with each new Overall Rating under the counterfactual Quality ratings.

2001 2005 2009 2013

2001 1 0.804 0.747 0.714

2005 0.804 1 0.815 0.767

2009 0.747 0.815 1 0.82

2013 0.714 0.767 0.82 1

Table E.5: Autocorrelation of β̂jt

Notes: Table reports correlations of β̂jt across 4-year bins. The estimates suggest that the

quality is highly stable across time.
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Variable Mean % Positive % Negative % Positive

Significant

% Negative

Significant

(a) Choice Model

Distance -1.66 0.00 1.00 0.00 1.00

Distance Sq 0.65 1.00 0.00 1.00 0.00

(b) Survival Model

Female 0.11 1.00 0.00 1.00 0.00

Age at Entry -0.08 0.04 0.96 0.02 0.78

Age at Entry Sq -0.05 0.17 0.83 0.10 0.63

ADL: Bath -0.01 0.36 0.64 0.15 0.29

ADL: Bed -0.07 0.00 1.00 0.00 0.90

ADL: Dressing -0.02 0.16 0.84 0.02 0.17

ADL: Eating -0.15 0.00 1.00 0.00 1.00

ADL: Hygiene -0.08 0.00 1.00 0.00 0.95

ADL: Walking 0.04 0.98 0.02 0.87 0.00

ADL: Locomotion -0.05 0.03 0.97 0.00 0.70

ADL: Toileting -0.03 0.05 0.95 0.00 0.31

ADL: Transfering 0.00 0.46 0.54 0.05 0.03

Disability 0.01 0.84 0.16 0.24 0.01

ESRD -3.15 0.01 0.99 0.00 0.81

Fall: 1 month 0.01 0.81 0.19 0.44 0.04

Fall: Last 6 months -0.01 0.32 0.68 0.07 0.30

Fracture: last 6 months 0.08 1.00 0.00 1.00 0.00

Race: Black -0.82 0.80 0.20 0.72 0.18

Race: Other -1.10 0.68 0.32 0.51 0.28

Weight: Underweight -0.07 0.00 1.00 0.00 1.00

Weight: Overweight 0.06 1.00 0.00 0.99 0.00

Weight: Obese 0.08 1.00 0.00 0.97 0.00

Table E.6: Parameter Estimates of the Choice and Survival Models

Notes: Table reports the parameter estimates of the (a) choice and (b) survival models.

Additionally, we report the percentage of markets in which the estimates are positive or

negative, as well as the share in which they are statistically significant at the 5% level. For

brevity we omit the coefficients from the 19 diagnosis codes that enter the survival equation.
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(1) (2) (3) (4)

(a)

Resident Cases

Per Bed

Non-Selection Adjusted β̂NAjt -0.00327 -0.00179 -0.000517 -0.00145

(0.00253) (0.00256) (0.00254) (0.00285)

2019 NHC Rating -0.00639*** 0.00209 0.00429*

(0.00180) (0.00190) (0.00212)

Mean 0.482 0.482 0.482 0.480

Observations 13160 13087 13074 12245

(b)

Resident Deaths

Per Bed

Non-Selection Adjusted β̂NAjt -0.000897 -0.000993 -0.00132 -0.00189*

(0.000791) (0.000800) (0.000805) (0.000904)

2019 NHC Rating 0.000258 0.00107 0.00151*

(0.000569) (0.000608) (0.000697)

Mean 0.0911 0.0912 0.0912 0.0910

Observations 13160 13087 13074 12245

(c)

Staff Cases

Per Bed

Non-Selection Adjusted β̂NAjt 0.0175*** 0.00989*** 0.0117*** 0.0118***

(0.00216) (0.00214) (0.00208) (0.00229)

2019 NHC Rating 0.0332*** 0.0199*** 0.0214***

(0.00149) (0.00144) (0.00161)

Mean 0.467 0.467 0.467 0.465

Observations 13160 13087 13074 12245

(d)

Vaccinated

Residents, %

Non-Selection Adjusted β̂NAjt 0.723*** 0.401*** 0.205* 0.246*

(0.101) (0.103) (0.0998) (0.113)

2019 NHC Rating 1.462*** 1.194*** 1.249***

(0.0739) (0.0755) (0.0862)

Mean 87.25 87.26 87.26 87.22

Observations 13158 13085 13072 12247

(e)

Vaccinated

Staff, %

Non-Selection Adjusted β̂NAjt 1.346*** 1.026*** 0.852*** 0.660***

(0.129) (0.131) (0.130) (0.140)

2019 NHC Rating 1.386*** 1.156*** 1.308***

(0.0943) (0.0975) (0.105)

Mean 78.23 78.25 78.25 78.56

Observations 13163 13090 13077 12251

Additional Controls No No Yes Yes

HRR FEs Yes Yes Yes No

County FEs No No No Yes

Standard errors in parentheses

* p < 0.05, **p < 0.01, ***p < 0.001

Table E.7: Regressions of Covid-19 Outcomes on Nursing Home Quality Estimates using
Non-Selection-Adjusted Quality Estimates β̂NAjt

Notes: Table reports regressions of several Covid-19 outcomes on several facility charac-

teristics. Instead of our selection-corrected estimates, we use estimates of βjt obtained by

setting facility-specific selection parameters αjt to 0. This is equivalent to a simple risk-

adjusted mortality-based quality estimate, which still includes the shrinkage properties of

our Bayesian estimator. The Nursing Home Compare Overall Rating is as it appeared on the

website in December 2019. Additional controls include the log of mean household income for

the SNF’s zip code, log number of total beds, and indicators for the for-profit status, chain

membership, the presence of an Alzheimer’s unit, and whether the SNF is hospital-based.

Standard errors in parentheses are all clustered at the facility-level.
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