
Inference for Regression with
Variables Generated from Unstructured Data∗

Laura Battaglia Tim Christensen
Oxford UCL

Stephen Hansen Szymon Sacher
UCL, IFS, and CEPR Stanford

February 26, 2024

Abstract

The leading strategy for analyzing unstructured data uses two steps. First, latent
variables of economic interest are estimated with an upstream information retrieval
model. Second, the estimates are treated as “data” in a downstream econometric
model. We establish theoretical arguments for why this two-step strategy leads to
biased inference in empirically plausible settings. More constructively, we propose a
one-step strategy for valid inference that uses the upstream and downstream models
jointly. The one-step strategy (i) substantially reduces bias in simulations; (ii) has
quantitatively important effects in a leading application using CEO time-use data;
and (iii) can be readily adapted by applied researchers.

JEL Codes: C11, C51, C55

Keywords: Unstructured Data, Information Retrieval, Topic Modeling, Hamiltonian
Monte Carlo, Measurement Error

∗Authors are listed in alphabetical order. This paper first circulated without TC as co-author
under the title “Hamiltonian Monte Carlo for Regression with High-Dimensional Categorical Data”
(https://doi.org/10.48550/arXiv.2107.08112) which was the second chapter of SS’s PhD thesis.
SH acknowledges funding from ERC Consolidator Grant 864863, which supported his and LB’s time.
We thank David Rossell for feedback, as well as seminar and workshop participants at Barcelona School
of Economics, Columbia University, and the 3rd Monash-Warwick-Zurich Text-as-Data Workshop. The
authors also thank the NumPyro development team for their outstanding work.

https://doi.org/10.48550/arXiv.2107.08112


1 Introduction

As the amount of digitally recorded unstructured data continues to grow rapidly, empiri-

cal work in economics is increasingly incorporating it. The leading example of such data

is text (Gentzkow et al. 2019a, Ash and Hansen 2023), but others include surveys, images,

and audio recordings. One of the primary applications of such data is to recover some

latent variable of economic interest with an information retrieval (IR) model. Examples

abound: Baker et al. (2016) measures economic policy uncertainty with newspaper text;

Hoberg and Phillips (2016) infers firms’ latent industries with corporate filings; Hansen

et al. (2018) constructs measures of policy deliberation from Federal Open Market Com-

mittee (FOMC) transcripts; Magnolfi et al. (2022) uses survey data to measure product

differentiation; Compiani et al. (2023) measures substitutability between products using

Amazon text and image data; Gorodnichenko et al. (2023) measures tone-of-voice from

audio recordings of FOMC press conferences; Gabaix et al. (2023) imputes firm char-

acteristics from investor holdings data; Einav et al. (2022) infer patients’ health status

from survey answers; Vafa et al. (2023) constructs a measure of labor market experience

based on CVs. These derived measures are rarely an end in themselves. Rather, the

motivation for constructing them is to study how the concept they proxy interacts with

the economic environment. As such, they are typically plugged into downstream econo-

metric models whose parameters are the main object of study. Importantly, the IR and

econometric models are almost always treated as wholly separate, with the output of the

former treated as “data” in the latter. We call this the two-step strategy.

While clearly a pragmatic initial approach, the two-step strategy has largely unknown

statistical properties. On one hand, ignoring the upstream IR model in the downstream

econometric model suggests a generated regressor problem (Pagan 1984). On the other,

results in the time-series literature suggest plugging-in estimated latent variables need

not lead to inference problems (Stock and Watson 2002, Bernanke et al. 2005, Bai and

Ng 2006). More generally, characterizing the statistical guarantees—or lack thereof—of

the two-step strategy is an important step in establishing a more mature understanding

of reliable inference methods for unstructured data, an area that is still in its infancy.

Our first contribution is to provide theoretical arguments for why the two-step strat-

egy leads to biased inference on regression parameters in empirically plausible settings.

We consider a set of n observations of quantitative and unstructured data. Each unstruc-

tured observation is composed of a high-dimensional vector of feature counts,1 where Ci

1For example, one of the simplest representations of a textual corpus is the bag-of-words model in
which each document is represented as a vector of integer counts over the unique vocabulary terms
in the corpus. Even relatively small corpora contain thousands of unique dimensions. Moreover, the
dimensionality grows even further as one consider richer linguistic units than individual words. More
generally, many unstructured datasets can be represented as high-dimensional, categorical data.
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is the amount of unstructured data for observation i. The relative magnitudes of n ver-

sus moments of Ci play a key role in our analysis. We next specify a statistical model

with three parts: a distribution over the feature-count vectors; a low-dimensional, latent

variable representation for each such distribution; and a regression of an observed out-

come variable onto the latent variables. The two-step strategy (i) estimates the latent

variables from the observed feature counts, then (ii) regresses the outcome variable onto

these estimates. This procedure mimics the common approach in the empirical litera-

ture described above. Our primary theoretical question is: under what conditions do the

estimated coefficients and standard errors from (ii) allow for valid inference?

The basic problem is measurement error: the regressors in step (ii) contain estimated

rather than true latent variables. As is well known, measurement error leads to biased

point estimates and distorted standard errors, both of which are present as the number

of observations n grows with a fixed amount of unstructured data per observation. To

capture a more empirically realistic situation, we allow n and the distribution of Ci to grow

together so that both sampling error and measurement error are relevant for inference.2

Our main finding is that, whenever
√
n×E

[
1
Ci

]
tends to a constant κ > 0, there is a bias

present in the asymptotic distribution of the regression coefficients which is increasing

in κ. Larger values of κ give relatively greater importance to measurement error, and

hence a larger bias. However, the asymptotic variance is the same as that from regression

onto the true latent variables and the usual OLS standard errors are consistent. Hence,

treating the estimated latent variables as observed data in the regression does not distort

the width of confidence intervals, but centers them away from the truth. This contrasts

with the generated regressor literature, which emphasizes the variance distortion arising

from treating plug-in estimates as data.3 Only when κ = 0, so that sampling error

dominates measurement error, does the two-step strategy allow for valid inference.

Of course, κ describes limiting behavior and cannot be used to directly compute the

magnitude of the bias in a given finite dataset. But our theoretical arguments provide

insight into when this bias is potentially problematic. Take, for example, job postings

data as recorded by Lightcast (formerly Burning Glass), which has been used in dozens of

papers. In 2022, there were 45 million individual job postings in the United States, with

an average inverse posting length of 0.003. The empirical analogue of κ is
√

45, 000, 000×
0.003 ≈ 20, suggesting that measurement error may be large relative to sampling error.

Another insight of the theory is that the magnitude of the bias arises not from the average

2This framework is motivated by the observation that both sample size and the amount of unstructured
data per observation are typically large in applications. Conventional fixed-DGP asymptotics provide
poor approximations to this case. Our use of sequences of DGPs to get better asymptotic approximations
to finite-sample behavior is similar in spirit to the weak instrument literature (Staiger and Stock 1997),
earlier work on measurement error (Chesher 1991), and unit root testing (Phillips 1987).

3In the classic generated regressor problem (Pagan 1984) there is a common finite-dimensional pa-
rameter estimated in the first stage whereas here all n latent covariates are estimated.

2



amount of unstructured data per observation but rather the average inverse amount. So,

if a dataset has a long tail of observations with little data, a bias can arise even if there

is a substantial amount of data per observation on average. Again taking the Lightcast

data, the average document size is 575. If one used 1/575 in place of E
[
C−1i

]
to compute

the analogue of κ, 20 would fall to below 12, highlighting the role of this tail behavior

in driving measurement error bias. Nor is the Lightcast data a special case. There were

315, 000 patents filed to the US Patent and Trademark Office in 2023 and their summary

texts have an average inverse document length of 0.002, so the analogue of κ is above

1. The calculation based instead on the inverse of the average document length is 0.4.

Of course, there are other cases where one may have few total observations but with

each individual observation having a large amount of unstructured data.4 Because the

exact magnitude of the problem is hard to assess in any given setting, it is important to

develop robust inference methods that guard against measurement error whenever it may

be present, but still allow reliable inference when it is not.

Our second contribution is to propose such an inference method: directly use the

model’s joint distribution over unstructured data, latent variables, and numeric outcomes

to perform maximum likelihood estimation. We refer to this as the one-step strategy.

While implementing the one-step strategy is straightforward theoretically, it presents

a major computational challenge due to the large number of observation-specific latent

variables that must be integrated out. To address this, we use Hamiltonian Monte Carlo

(HMC; MacKay 2003, Neal 2012), a Markov Chain Monte Carlo algorithm that uses in-

formation on the gradient of a distribution to sample from it. Implementation is greatly

simplified with the use of modern probabilistic programming languages: one simply spec-

ifies the likelihood in code, which is then “automatically” compiled to perform sampling.

This paradigm is useful for applied researchers because it allows one to focus on model

development without the need to re-write the estimation and inference algorithms each

time the model is changed.5 The most common probabilistic programming language in

applied econometrics is Stan (Carpenter et al. 2017), which has been used by, for example,

Meager (2019) and Bandiera et al. (2021). Such applications have been limited to sim-

ple Bayesian meta-analyses with a few dozen parameters. Instead, we use the NumPyro

package (Bingham et al. 2018, Phan et al. 2019), which efficiently computes the gradients

that underlie HMC by using massive parallelization on dedicated hardware.

4This case is similar to that typically considered in the literature on factor-augmented regression,
which extracts common factors from time series and plugs them into downstream regressions. There are
typically dozens or hundreds of time series N per time unit, but limited observations T per series. In
our setting, T (respectively 1/N) is analogous to n (respectively E[C−1

i ]). Bai and Ng (2006) show that

factor augmentation leads to valid inference when
√
T/N → 0, analogous to κ = 0.

5Previous papers that have performed inference using the joint likelihood approach with unstructured
data include Gentzkow et al. (2019b), Ruiz et al. (2020), and Munro and Ng (2022). These typically
require extensive code to estimate, which makes adapting the model difficult for non-specialists.
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Third, we compare the performance of the two-step and one-step strategies in an

applied setting. To this end, we introduce the Supervised Topic Model with Covariates

(STMC) which combines elements of existing models (Blei et al. 2003, Roberts et al.

2014, Ahrens et al. 2021) but is, to the best of our knowledge, a new statistical model

of unstructured data. The model reduces the dimensionality of feature-count vectors

by projecting them onto a set of latent factors (or topics), as in Probabilistic Latent

Semantic Analysis (Hofmann 1999) and Latent Dirichlet Allocation (Blei et al. 2003).

The dependence of outcome variables on latent factor loadings and observed covariates

is captured by a “downstream” regression model. Additionally, the factor loadings can

depend on a potentially different set of covariates via a second “upstream” regression

model. All components are woven together by a joint likelihood. Specifying the model

in code takes fewer than 25 lines, illustrating how one can perform automatic inference

in a new setting that would previously have required a bespoke and complex codebase.

Many important research questions can be addressed with STMC. Suppose each un-

structured observation is a monetary policy speech. One latent topic might have an in-

terpretation as price rises, so its loadings represent how much each speech discusses price

rises. A first research question, which can be addressed with the downstream model,

might ask how speakers’ attention to price rises is related to their policy actions. A sec-

ond research question might ask how policymakers’ backgrounds relate to the attention

they devote to price rises. That question can be addressed with the upstream model.

In simulated data, we show that the two-step strategy produces estimates that exhibit

a bias which is increasing in κ. Moreover, two-step confidence interval widths are similar

to those obtained using the true latent variables as covariates. Both of these findings

reinforce the main predictions of our theory. By contrast, the one-step strategy produces

estimates that appear unbiased and the corresponding confidence intervals have the same

widths as those using the true latent variables. Thus, one-step confidence intervals have

both the correct width and the correct centering.

Next, we revisit the empirical application from Bandiera et al. (2020) which uses the

two-step strategy to first estimate latent CEO behaviors from a CEO time-use survey,

then explains firm performance using the estimated behaviors. The one-step strategy

substantively changes estimates compared to the two-step strategy. For instance, the

estimated effect of having an MBA degree on behavior more than doubles depending

on whether the one-step or two-step strategy is used. To further test our theory, we

next reduce the amount of unstructured data per observation and again deploy both

inference strategies. This increases measurement error in latent behavior, and hence

should increase the bias of the two-step strategy. Since the one-step strategy is always

unbiased (asymptotically), one should observe larger differences in estimates, which is

what we find. The estimated impact of behavior on firm performance, equivalent for
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both methods in the original data, is now over twice as large under the one-step strategy.

Moreover, under the one-step strategy, the estimated effect sizes on behavior of having

an MBA degree and of managing a large firm now triple.

Our overall message is that a popular way of using unstructured data in empirical

work may suffer from measurement error which biases inference. We are unaware of

other papers that explicitly model the source of this error, and how it relates to sampling

error. Ultimately it is this trade-off (as manifested in κ) that is most important for

inference.6 On a more positive note, though, a solution exists that is relatively easy to

implement and computationally feasible. Since in practice researchers cannot characterize

the severity of the measurement error in a given dataset, and there is little downside to

applying the one-step strategy, we see it as a robust starting point for empirical analysis.

We do note, however, that implementing the one-step strategy requires formulating a

likelihood function. Latest-generation machine-learning- and AI-based approaches to

information retrieval increasingly use neural networks with no obvious statistical structure

that yields a likelihood function. A first comment is that, while implementing the one-

step strategy may not be possible in these settings, the measurement error problem does

not thereby disappear. Instead, it simply becomes harder to characterize statistically.

Second, such approaches are often given statistical foundations following their adoption

and, as this process plays out over the coming years, the scope for the one-step strategy

will expand accordingly.7 More generally, our belief is that inference problems arising from

the analysis of unstructured data should be better recognized and taken more seriously

in order to fully harness its potential value.

The rest of the paper proceeds as follows. Section 2 provides a simple setting in

which the inference problems associated with the two-step strategy emerge. Section 3

further develops these arguments and presents our main theoretical results. Section 4

discusses instead the one-step strategy, associated computational tools, and introduces

the Supervised Topic Model with Covariates. Section 5 presents simulation and empirical

results comparing the two strategies. Section 6 concludes.

6Fong and Tyler (2021), Allon et al. (2023), and Zhang et al. (2023) all assume the existence of
measurement error in a supervised learning algorithm used to generate regressors, but do not tie it to a
specific model. Their proposed solution relies on a correctly labeled subset of data which can be used to
build IV/GMM estimators. The one-step strategy requires no such labeled dataset to produce unbiased
estimates. It can also be extended easily to handle non-linear models with measurement error.

7One illustrative example is the popular word2vec model for producing word embeddings. The orig-
inal model (Mikolov et al. 2013b,a) had no statistical interpretation but yielded word representations
that nevertheless captured semantic relationships well. Word2vec has subsequently been adopted by
economists as part of the two-step strategy, for example to measure occupation-level exposure to tech-
nological change (Kogan et al. 2019) and emotionality in political speech (Gennaro and Ash 2022). In
parallel, a literature has developed likelihood-based interpretations of embeddings (Arora et al. 2016,
Dieng et al. 2020, Ruiz et al. 2020) which could in principle be adapted for use in the one-step strategy.
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2 Motivating Example

This section presents a stylized model to illustrate clearly how the standard two-step

strategy leads to biased inference in both the downstream and upstream models. The

main take-aways from the stylized model are borne out in our empirical application.

2.1 Stylized Model

The stylized model is loosely based on the seminal work of Baker et al. (2016), which

develops text-based measures of economic policy uncertainty (EPU) and investigates the

relationship between EPU indices and economic outcomes. Suppose we are interested in

the effect of θi (policy uncertainty in month i) on Yi (employment or investment, say, in

month i+ 1). We are primarily concerned with inference on γ1 in the regression model

Yi = γ0 + γ1θi + εi. (1)

Policy uncertainty itself is a nebulous concept that is difficult to precisely define let alone

observe. The key innovation of Baker et al. (2016) is to construct EPU indices based

on monthly counts of articles in 10 newspapers containing certain terms, then convert to

index form. Their EPU index is then introduced as a covariate in regressions and VARs.

But it’s arguably the case that their measure, while a strong signal of policy uncertainty,

is not numerically the same as policy uncertainty. For instance, one could change the set

of newspapers surveyed and obtain a quantitatively different (but related) measure. We

therefore adopt the specification

Xi ∼ Binomial(Ci, θi), (2)

where Xi is the number of counts observed out of a sample of size Ci and θi is the rate at

which counts are expected. In the terminology of Baker et al. (2016), Xi is the number

of articles containing certain key terms in month i, Ci is the total number of articles

that month, and θi is policy uncertainty that month. The variables Xi, Yi, and Ci are

observed but θi is not. One can estimate θi using θ̂i = Xi/Ci, which is what Baker et al.

(2016) do to construct their policy uncertainty measure.8

To facilitate the theoretical derivations below, let E[εi|θi, Xi, Ci] = 0 and Var(θi) > 0,

so OLS regression would be consistent if θi were observed, and E[ε2i ] < ∞. To simplify

derivations, we also assume (i) Yi and (Xi, Ci) are independent conditional on θi, and

(ii) Ci and θi are independent. These assumptions, which are credible in the context of

Baker et al. (2016), are made primarily for convenience and can be relaxed. We assume

8See p. 1599 of Baker et al. (2016).
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the data are a random sample (Xi, Yi, Ci)
n
i=1. Our analysis and findings extend easily to

time-series data, though we stick to the IID case to simplify presentation.

2.2 Two-Step Strategy

In the context of this example, the usual two-step strategy would estimate γ1 by regressing

Yi on θ̂i, then perform standard OLS inference for γ1. This approach overlooks the fact

that θ̂i is a noisy estimate of θi. Failing to account for this measurement error problem

may lead to biased estimates and inference.

Let γ̂1 denote the OLS estimator of γ1 from regressing of Yi on θ̂i. By standard OLS

algebra, as the sample size n→∞ we have

γ̂1 →p γ1
Cov(θi, θ̂i)

Var(θ̂i)

= γ1
Var(θi)

Var(θi) + E
[
C−1i

]
E [θi(1− θi)]

,

because E[θ̂i|θi, Ci] = θi and Var(θ̂i) = Var(θi) + E[C−1i ]E[θi(1 − θi)] by the law of total

variance and independence of Ci and θi. Evidently, there is an attenuation bias caused

by measurement error in θ̂i which makes γ̂1 inconsistent.

The key determinant of bias is the average reciprocal amount of unstructured data

per observation E
[
C−1i

]
. If the amount of unstructured data per observation is large so

that E[C−1i ] is small, we have

plim(γ̂1) ≈ γ1 − E
[

1

Ci

]
E [θi(1− θi)]

Var(θi)
γ1

because (1 + x)−1 ≈ 1− x for small x. Hence, the bias is of the order of E
[
C−1i

]
.

In many empirical settings, both measurement error and sampling error may play

important roles. To shed light on the behavior of γ̂1 in this scenario, we consider a

sequence of populations indexed by the sample size n. The distribution of (Yi, Xi, θi)

conditional on Ci is fixed but the distribution of Ci is changing with n so that

√
n× E

[
1

Ci

]
→ κ ∈ [0,∞). (3)

This should not be interpreted literally as the data-generating process. Rather, it is a

thought experiment to provide insights about how γ̂1 behaves when both measurement

and sampling error are present. The parameter κ controls the relative importance of

measurement error and sampling error: κ = 0 means sampling error swamps measurement

error, larger κ gives relatively greater importance to measurement error.
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Proposition 1. Consider the sequence of populations just described. Then

√
n(γ̂1 − γ1)→d N

(
−κ γ1

E[θi(1− θi)]
Var(θi)

,
E[ε2i (θi − E[θi])

2]

Var(θi)2

)
.

Proposition 1 shows that two-step inference is valid when κ = 0. In this case, mea-

surement error vanishes faster than sampling error and the estimated θ̂i can be treated

as if they are the true θi.

However, Proposition 1 also shows that two-step inference is invalid when κ > 0. In

this case, γ̂1 is consistent and its asymptotic variance is the same as if Yi were regressed

on the true θi, but the center of the asymptotic distribution is shifted due to the effect of

measurement error. Confidence intervals based on standard OLS inference will therefore

have approximately correct width but incorrect centering, meaning that their coverage

rates will be below nominal coverage.9

2.3 Upstream Inference

So far we have focused on the “downstream” regression model. Other research questions

might involve inference in an “upstream” model linking variation in θi (policy uncertainty)

to variation in an observed covariate Zi (legislative gridlock, say). In that context, θi or

some transformation of θi is the dependent variable in a regression on Zi. Because θi is

not observed, the two-step strategy would replace θi with θ̂i in the regression. As before,

the two-step strategy causes a measurement error problem, but now one that affects the

dependent variable rather than the independent variable. As the measurement error θ̂i−θi
is uncorrelated with Zi, there would be no bias if θ̂i were regressed on Zi. But there can

be a bias if a nonlinear transformation of θ̂i is used as the dependent variable.

To illustrate this, consider the following setup. Because θi is supported on [0, 1] it is

natural to transform it to have support R using the log-odds ratio (or similar). Suppose

we are concerned with inference on φ1 in the regression model

log

(
θi

1− θi

)
= φ0 + φ1Zi + ui.

We again assume E[ui|Zi] = 0 so that OLS would be unbiased if the true θi were observed.

Because θi is latent, one could instead regress the empirical log odds ratio

log

(
θ̂i

1− θ̂i

)
9It follows from the general treatment in Section 3 that Eicker–Huber–White standard errors based

on the estimated θ̂i are consistent, and therefore that confidence intervals have asymptotically correct
width. We do not provide a separate derivation of standard errors in Proposition 1 for brevity.
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on Zi. Let φ̂1 denote the corresponding OLS estimator. To understand the forces at

play, we study the behavior of φ̂1 in a sequence of populations where the distribution

of (Xi, Yi, Zi, θi) is fixed but the distribution of Ci varies with n so that (3) holds. Like

before, to facilitate derivations we assume (Xi, Ci) and Zi are independent conditional

on θi and Ci and (θi, Zi) are independent.

Proposition 2. Suppose that Assumption 3 in Appendix A holds. Then

√
n(φ̂1 − φ1)→d N

κCov
(

2θi−1
2θi(1−θi) , Zi

)
Var(Zi)

,
E [u2i (Zi − E[Zi])

2]

Var(Zi)2

 .

Proposition 2 shows that two-step inference in the upstream model is valid when

κ = 0 but invalid when κ > 0. In the latter case, confidence intervals based on standard

OLS inference will again have approximately correct width but incorrect centering, and

will therefore have coverage below nominal coverage. The degree to which standard OLS

confidence intervals under-cover depends partly on the size of Cov( 2θi−1
2θi(1−θi) , Zi). Because

the function x 7→ 2x−1
2x(x−1) diverges to ±∞ as x approaches 0 and 1, this covariance can be

very large when the distribution of θi puts mass near zero and/or one. Thus, first-order

bias can be large even when κ is small provided θi has sufficient mass in its tails.

3 Full Analysis of the Two-Step Strategy

In this section, we first describe the statistical framework linking unstructured data and

the downstream regression model. We then analyze the usual two-step strategy and shed

light on when it leads to valid inference, extending the findings from the stylized model

in Section 2 to a general setting. In particular, two-step inference is valid only when the

amount of unstructured data per observation is much larger than sample size, so that

measurement error is of smaller order than sampling error. Otherwise, confidence intervals

based on the usual two-step strategy have the correct width but incorrect centering, and

therefore have coverage rates below nominal coverage. In the next section, we supplement

the statistical framework with an upstream model linking covariates to the unstructured

data to produce the Supervised Topic Model with Covariates and discuss how it solves

some of these inference problems.

3.1 Statistical Framework

We begin by specifying a statistical model that, broadly speaking, has two parts. The first

part computes low-dimensional numerical representations of the unstructured data. The

second part introduces these numerical representations as covariates, potentially along
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with other quantitative data, into a linear regression model. For instance, the first part

might impute measures of policy uncertainty or market sentiment from news sources,

while the second part might use these to explain macroeconomic fluctuations or returns.

Hence, the first part projects the high-dimensional unstructured data to low-dimensional

feature space, while the second conducts inference in a regression whose covariates are

formed from the features.

3.1.1 Model

We consider a setting where each unstructured observation i is described by xi, a V -

dimensional vector of count variables, where xi,v is the number of times a feature v

appears in observation i. We consider V to be high dimensional. This setting is not

overly restrictive, as many types of unstructured data are naturally high-dimensional

and discrete. For example, in the bag-of-words model V is the number of unique terms in

a textual corpus, typically in the thousands, and xi,v is the count of term v in document

i. The first part of the model generates a K-dimensional representation θi of xi, where

K � V . The second part introduces these low-dimensional representations as covariates,

potentially along with other quantitative data qi, into a linear regression model:

Yi = γTθi +αTqi + εi, E [εi|θi,qi] = 0. (4)

In most empirical applications in economics and finance, the key parameters of interest

are the γ regression coefficients. Hence, we will focus mainly on estimation and inference

for γ in what follows.

The model we consider for the unstructured data is widely used in practice but also

tractable enough that we can develop theory for why the two-step strategy leads to biased

inference in empirically realistic settings. As xi is a vector of counts, it is without loss of

generality to model it as a Multinomial distribution. We impose additional structure on

the count probabilities for interpretability. The model is based on Probabilistic Latent

Semantic Analysis (Hofmann 1999, PLSA), a widely used factor model for discrete data,

and its close cousin Latent Dirichlet Allocation (Blei et al. 2003, LDA). Formally,

xi|(Ci,θi) ∼ Multinomial(Ci,B
Tθi), (5)

where Ci =
∑V

v=1 xi,v is the count of all features in observation i—a measure of the

amount of unstructured data for observation i—and the count probabilities have a factor

structure pi = BTθi.
10 There are K separate distributions over the V features denoted

β1, . . . ,βK where each βk lies in the (V − 1)-dimensional simplex. In text applications,

10This model nests as a special case a pure multinomial model where B = I and θi = pi.
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these distributions are called topics, but more generally they represent common factors

from which individual observations are built. We collect the factors into a K × V row-

stochastic matrix B where BT = [β1, . . . ,βK ]. Each observation i is characterized by the

latent vector θi which lies in the (K− 1)-dimensional simplex. Its elements θi,k represent

the weight attached to βk in generating xi. Hence, the count probabilities for observation

i are pi =
∑K

k=1 βkθi,k. It is helpful to think of B as a matrix of common parameters and

θi as an observation-specific latent random vector. The quantity Ci determines the degree

of precision with which we can infer θi from xi. The interplay between the distribution

of Ci and the number of observations n plays an important role in our theory below.

Example: Monetary Policy Speeches. Suppose each unstructured observation is

a monetary policy speech. One distribution βk might put high weight on words like

‘inflation’, ‘prices’, and ‘cpi’, so βk would have an interpretation as price rises. The

corresponding θi,k then represents how much speech i discuss price rises. One research

question might ask how attention paid to price rises, along with other economic condi-

tions captured by other topics, affects policy actions. This could be captured by the γ

coefficients in (4) where Yi is the policy action of speaker i and qi measures quantitative

information like market forecasts for growth and inflation at the time the speech was

made.

The main point beyond this specific example is that many research questions that seek to

map variation across high-dimensional count observations as captured by a topic model

into variation in some numeric variable will involve inference on γ.

3.1.2 Data and Maintained Assumptions

The data available are a random sample (Yi,qi,xi, Ci)
n
i=1 satisfying (4) and (5). We

further assume that Ci is independent of θi, qi, and Yi, and that Yi and xi are independent

conditional on Ci and θi. We emphasize that these restrictions are not essential and are

made to simplify the following derivation. Our theory can easily be extended to time-

series models, such as where (5) is replaced by a vector autoregression. We do not do so

here, however, as the main take-aways are most clearly illustrated in the IID case.

We also assume that B and the θi are identified in the sense that there is a unique de-

composition P = BTΘ with P = [p1, . . . ,pn] collecting the vectors of count probabilities

across observations and Θ = [θ1, . . . ,θn] collecting the topic weights across observations.

For instance, identification is commonly achieved in text applications by assuming the

existence of certain anchor words: these are words that are known to appear in certain

topics but not others. We impose this identifiability condition because our objective is

to analyze the consequences of the two-step inference approach in a transparent way.
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Adding partial identification into the mix will significantly complicate the analysis but

may be an interesting extentsion in future research.

3.2 Theory for the Two-Step Strategy

The standard two-step strategy can be summarized as follows:

(i) Estimates θ̂i of θi are computed from the unstructured observations, e.g. by LDA.

(ii) Yi is regressed on θ̂i and qi. Conventional OLS standard errors are reported, treat-

ing the θ̂i as if they are regular numeric data.

Evidently there is a measurement error problem: the estimates θ̂i are noisy proxies for

the true θi appearing in the regression model (4). But Step (ii) overlooks this problem

and treats the first-stage estimates θ̂i as regular numeric data. This raises the possibility

that OLS estimates of γ may be biased due to measurement error introduced in Step (i).

Moreover, conventional standard errors are typically reported for inference on γ. These

do not account for any additional variation introduced by using noisy θ̂i instead of θi,

raising the possibility that inference may be biased.

In this section, we use the above statistical framework to explore when this approach

delivers valid estimates and inference for γ. To focus on the key conceptual issues, we

abstract away from any additional covariates qi in the regression equation (4).11 Once

qi is omitted the regression still contains an intercept because the elements of θi sum to

one. In this simplified setting, the OLS estimator of γ is given by

γ̂ =

(
1

n

n∑
i=1

θ̂i θ̂
T
i

)−1(
1

n

n∑
i=1

θ̂iYi

)
. (6)

3.2.1 Fixed Population

We first consider the large-sample properties of γ̂ where the number of observations

becomes large (n→∞) but the distribution of (Yi,qi,xi, Ci)
n
i=1 is held fixed. This fixed-

population asymptotic framework captures a setting where the amount of unstructured

data per observation is small relative to the overall sample size, as commonly encountered

in empirical work.

There are many different ways of estimating B and Θ := [θ1, . . .θn] in (5). For

instance, one could use LDA (Blei et al. 2003) or more recent methods developed by

Bing et al. (2020), Wu et al. (2023), Ke and Wang (2022), and many others. As our

11This is not restrictive, as any additional numeric covariates can be partialled-out at the cost of more
complicated notation. Similarly, the following analysis and findings extend easily to models where (4) is
replaced by Yi = γT (Aθi) +αTqi + εi for some known matrix A. See Section 3.3.
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objective is to focus on the consequences of the above two-step strategy, we abstract

from algorithmic-specific details and instead impose some mild high-level conditions on

the estimators B̂ of B and Θ̂ of Θ. Let P̂ = [p̂1, . . . , p̂n] = [x1/C1, . . . ,xn/Cn] denote

the V × n matrix of sample frequencies (or term frequencies, in text applications). Let

→p denote convergence in probability as the number of observations n becomes large.

Assumption 1. (i) B and E
[
θiθ

T
i

]
have full rank.

(ii) B̂→p B.

(iii) max1≤i≤n ‖θ̂i − (B̂B̂T )−1B̂p̂i‖ →p 0.

Assumption 1(i) says that there are no fewer than K topics. We view this as a weak

restriction as K is typically much smaller than V in applications. Assumption 1(ii) says

that the estimator B̂ is consistent for the topic weights B. This is a mild condition

satisfied by many estimators for topic models. Assumption 1(iii) imposes some structure

on the estimators θ̂i that we leverage to derive the asymptotic properties of γ̂. Note

that Assumption 1(iii) is not vacuous: we have θi = (BBT )−1Bpi (by Assumption 1(i))

so, given any consistent estimator B̂ of B, one could estimate θi simply by setting θ̂i =

(B̂B̂T )−1B̂p̂i. In that case, max1≤i≤n ‖θ̂i − (B̂B̂T )−1B̂p̂i‖ = 0. Also note that the first

condition in (i) and parts (ii) and (iii) hold trivially for the pure multinomial model

because B̂ = B = I and p̂i = θ̂i.

Our first main result shows that the OLS estimator of γ in equation (6) is inconsistent

in this fixed-population setting. Let diag(v) denote a diagonal matrix whose diagonal

elements are the elements of the vector v.

Theorem 1. Suppose that Assumption 1 holds. Then

γ̂ →p

(
E
[
θiθ

T
i

]
+ E

[
1

Ci

] (
(BBT )−1Bdiag(BTE [θi])B

T (BBT )−1 − E
[
θiθ

T
i

]))−1
E
[
θiθ

T
i

]
γ .

In particular, if E[C−1i ] is small, then

γ̂ →p γ − E
[

1

Ci

](
E
[
θiθ

T
i

]−1
(BBT )−1Bdiag(BTE [θi])B

T (BBT )−1 − I
)
γ +O

(
E
[

1

Ci

]2)
.

The first part of Theorem 1 shows that the measurement error introduced by regressing

Yi on θ̂i instead of the true (infeasible) θi makes the estimator γ̂ inconsistent. How

well we can impute the true latent θi for each observation i depends on the amount of

unstructured data Ci. Because each Ci is finite, each θ̂i has a measurement error that

doesn’t disappear when the number of observations n becomes large. As a consequence,

γ̂ is biased (even asymptotically).
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More constructively, Theorem 1 shows that what is important for controlling bias is

not the average amount of unstructured data E[Ci] but rather the mean reciprocal amount

E[C−1i ]. This makes intuitive sense, as the measurement error in θ̂i decays with Ci but the

rate of decay decreases with Ci. If the population contains a larger share of observations

with small Ci, then larger measurement errors in θ̂i will be more prevalent and γ̂ will

have a larger bias12. It is important to emphasize that even if most observations have a

large Ci but a small mass do not (meaning that E[C−1i ] may still be large), then the noise

in θ̂i from the observations with small Ci can still substantially bias γ̂.

The second part of Theorem 1 shows that when all observations have a large amount

of unstructured data (so that E[C−1i ] is small), the first-order effect is a bias of size

−E
[

1

Ci

] (
E
[
θiθ

T
i

]−1
(BBT )−1B diag(BTE [θi])B

T (BBT )−1 − I
)
γ.

Thus, the first-order effect of bias is proportional to E[C−1i ].

3.2.2 Sequence of Populations

We now build on this insight to consider a sequence of populations where the amount of

unstructured data per observation becomes larger as the sample size n increases. This

asymptotic framework is designed to shed light on how γ̂ behaves when there is a rela-

tively large number of observations and there is a large amount of unstructured data per

observation. In this scenario, the measurement errors for each observation are small but

their cumulative effect may not be completely ignorable relative to sampling error.

Formally, we consider a sequence of populations indexed by sample size n. In each

population, we keep the distribution of (Yi,θi,qi) conditional on Ci fixed and as described

in Section 3.1. We also maintain the assumption that xi is given by the topic model (5).

However, we let the marginal distribution of Ci to change with the sample size n to allow

the amount of unstructured data per observation to become large as the sample size n

increases. Specifically, we consider a framework in which

√
n× E

[
1

Ci

]
→ κ ∈ [0,∞) (7)

as n → ∞. The quantity κ plays a key role in the following analysis. Loosely speaking,

κ represents the relative magnitudes of sampling error and measurement error.

The case κ = 0 corresponds to a setting in which the amount of unstructured data

12To put it differently, increasing the amount of unstructured data for the observations with small Ci

will have a larger effect on the expected average size of the measurement error than if the additional
data was collected for the observations with large Ci. Consequently, the across-observation distribution
of Ci matters beyond its mean
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per observation is of much larger order than sample size. Consequently, measurement

error is of smaller order (asymptotically) than sampling error. In this case, our theory

implies that the two-step strategy leads to valid inference. That is, the measurement error

introduced by regressing Yi on θ̂i instead of θi can effectively be ignored and standard

inference can proceed treating the θ̂i as if they are the true θi.

The case κ ∈ (0,∞) is the critical case in which there is a large, but not overwhelming,

amount of unstructured data per observation. This case mimics many empirically realistic

designs where measurement error and sampling error are both small but non-negligible.

We show in this case that γ̂ is consistent but standard two-step inference is invalid. In

particular, the asymptotic distribution of γ̂ has the correct variance but its center is

shifted due to measurement error bias. Consequently, confidence intervals based on the

usual two-step strategy have the correct width but incorrect centering, and therefore have

a coverage rate that is smaller than nominal coverage.13

In what follows, notions of convergence in probability and distribution should be

understood as holding along this sequence of populations satisfying (7).

Assumption 2. (i) B, E
[
θiθ

T
i

]
, and E

[
ε2iθiθ

T
i

]
have full rank.

(ii)
√
n(B̂−B)→p 0.

(iii)
√
nmax1≤i≤n ‖θ̂i − (B̂B̂T )−1B̂p̂i‖ →p 0.

(iv) E
[
|εi|2+δ

]
<∞ for some δ > 0.

(v) Ci & (log n)1+ε almost surely for some ε > 0.

Assumption 2(i) is mostly the same as Assumption 1(i) except we also require that

E
[
ε2iθiθ

T
i

]
has full rank so that the asymptotic variance of γ̂ is well defined. Parts (ii)

and (iii) strengthen parts (ii) and (iii) of Assumption 1 to require convergence a faster-

than-root-n rate. This is really to simplify the derivation: if convergence occurs instead

at a root-n rate, then additional terms may distort the asymptotic distribution further.

Nevertheless we believe these two conditions are broadly satisfied. For instance, part (ii)

is mild in view of known convergence rates established for estimators of B.14 As before,

part (iii) is made to simplify the derivation but is also not vacuous: given any estimator

B̂ proposed in the literature satisfying part (ii), one could construct θ̂i directly by setting

13The case κ = +∞ corresponds to a setting where measurement error is of larger order than sampling
error. Here γ̂ is consistent provided E[C−1

i ]→ 0 but two-step inference is invalid because bias is of larger
order than sampling uncertainty. In that case, the coverage rates of standard OLS confidence intervals
asymptote to zero as the sample size n becomes large.

14Bing et al. (2020), Wu et al. (2023), and Ke and Wang (2022) derive finite-sample upper bounds for

various estimators B̂ of B. Each of their results implies the corresponding estimator B̂ converges at the
optimal rate (nC)−1/2 (up to log terms) where, for simplicity, the Ci are all of the same order C. Hence,

all estimators B̂ converge faster than n−1/2 when C grows with n, as we have here by (7).
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θ̂i = (B̂B̂T )−1B̂p̂i, in which case
√
nmax1≤i≤n ‖θ̂i − (B̂B̂T )−1B̂p̂i‖ = 0. As before, the

first condition in (i) and parts (ii) and (iii) hold trivially for the pure multinomial model

because B̂ = B = I and p̂i = θ̂i. Part (iv) is standard for inference for regression

under conditional heteroskedasticity (e.g., White (1980)). Finally, Part (v) is made to

simplify technical derivations and can be relaxed. This assumption means that for each

n, Ci is supported on [c(log n)1+ε,∞) for some constants c, ε > 0. This condition is much

weaker than the conventional assumption that all Ci grow at the same rate C (Bing

et al. 2020, Wu et al. 2023, Ke and Wang 2022) which, in view of (7), would imply that

Ci is supported on [cn1/2,∞). This condition is only used to establish consistency of

Eicker–Huber–White standard errors and is not required for asymptotic normality.

Our second main result shows that the OLS estimator of γ in equation (6) is consistent

and derives its asymptotic distribution.

Theorem 2. Suppose that Assumption 2 holds. Then

√
n (γ̂ − γ) + κ

(
E
[
θiθ

T
i

]−1
(BBT )−1Bdiag(BTE [θi])B

T (BBT )−1 − I
)
γ

→d N
(
0,E

[
θiθ

T
i

]−1 E [ε2i θiθTi ]E [θiθTi ]−1) (8)

and(
1

n

n∑
i=1

θ̂i θ̂
T
i

)−1(
1

n

n∑
i=1

ε̂2i θ̂i θ̂
T
i

)(
1

n

n∑
i=1

θ̂i θ̂
T
i

)−1
→p E

[
θiθ

T
i

]−1 E [ε2i θiθTi ]E [θiθTi ]−1 ,
(9)

where ε̂i = Yi − θ̂Ti γ̂.

Theorem 2 shows that inference is valid when κ = 0. In this case, we have

√
n (γ̂ − γ)→d N

(
0,E

[
θiθ

T
i

]−1 E [ε2iθiθTi ]E [θiθTi ]−1) .
The OLS estimator obtained by regressing Yi on θ̂i therefore has the same asymptotic

distribution as the (infeasible) OLS estimator obtained by regressing Yi on the true latent

θi. The reason is that κ = 0 corresponds to a scenario where measurement error is of

smaller order than sampling error. Moreover, the usual Eicker–Huber–White standard

errors computed using the estimates θ̂i are consistent. Hence, measurement error can

effectively be ignored when performing inference on γ.

At an abstract level, this case is analogous to asymptotic theory for factor-augmented

regressions. In that setting, latent factors Ft at each date are imputed from a vector

of N predictor variables xt, then the estimated factors F̂t are treated as covariates in a

regression model. Bai and Ng (2006) show that treating the estimated factors F̂t as if

they are the true latent factors Ft leads to valid inference provided
√
T/N → 0, where T
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is the time-series dimension and N is the cross-sectional dimension. Their Ft is analogous

to our θi, their T is analogous to our n, and their 1/N is analogous to our E[C−1i ]. Hence,

their condition
√
T/N → 0 is analogous to κ = 0.

An important insight developed in Theorem 2 is that standard two-step inference

is valid if and only if κ = 0. If κ > 0, then the asymptotic distribution of γ̂ has

the correct variance (which is consistently estimated by the usual Eicker–Huber–White

standard errors) but its center is shifted due to measurement error bias.15 Consequently,

confidence intervals have the correct width but incorrect centering, and therefore have

coverage below their nominal coverage.

3.3 General Regression Model

The insights developed in Theorems 1 and 2 were presented for the basic regression model

Yi = γTθi + εi. We now show they extend to more general models of the form

Yi = γT (Aθi) +αTqi + εi, E[εi|Aθi,qi] = 0, (10)

where A is a pre-specified matrix. For instance, Yi may be known to depend only on a

subset of topics corresponding to particular elements of θi, in which case A picks off the

relevant elements (topics).

By residual regression, we can write model (10) as

Yi = γTϑi + ei,

where ϑi = Aθi−E
[
Aθiq

T
i

]
E
[
qiq

T
i

]−1
qi and ei = εi+α

Tqi+γ
T (Aθi−ϑi). Similarly,

the least-squares estimator of γ in model (10) can be expressed

γ̂ =

(
1

n

n∑
i=1

ϑ̂iϑ̂
T
i

)−1(
1

n

n∑
i=1

ϑ̂iYi

)
, (11)

where ϑ̂i = Aθ̂i −A( 1
n

∑n
i=1 θ̂iq

T
i )( 1

n

∑n
i=1 qiq

T
i )−1qi.

Reasoning as in Theorem 1, the OLS estimator γ̂ in (11) will be inconsistent in a

fixed-population asymptotic framework where the amount of unstructured data Ci per

observation is small relative to the sample size n.

Now consider a sequence-of-populations asymptotic framework where the distribution

of unstructured data is allowed to grow with sample size as in (7). By a straightforward

15This is the opposite of a generated regressors problem (Pagan 1984), where the asymptotic variance
is inflated but there is no location shift. With generated regressors there is a common finite-dimensional
parameter estimated in the first stage whereas here all n covariates θ1, . . . ,θn are estimated in the first
stage. See Bai and Ng (2006) for further discussion in the context of factor-augmented regressions.
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modification of the arguments in Theorem 2, the OLS estimator of γ in equation (11) is

consistent and asymptotically normal, but with an incorrect centering when κ > 0:

√
n (γ̂ − γ) + κE

[
ϑiϑ

T
i

]−1
A
(
(BBT )−1Bdiag(BTE [θi])B

T (BBT )−1 − E
[
θiθ

T
i

])
Aγ

→d N
(
0,E

[
ϑiϑ

T
i

]−1 E [ε2iϑiϑTi ]E [ϑiϑTi ]−1) .
Two-step standard errors are also consistent, irrespective of whether κ = 0 or κ > 0:(

1

n

n∑
i=1

ϑ̂i ϑ̂
T
i

)−1(
1

n

n∑
i=1

ê2i ϑ̂i ϑ̂
T
i

)(
1

n

n∑
i=1

ϑ̂i ϑ̂
T
i

)−1
→p E

[
ϑiϑ

T
i

]−1 E [ε2iϑiϑTi ]E [ϑiϑTi ]−1 ,
where êi = Yi − ϑ̂Ti γ̂.

Hence, as before, standard two-step inference on γ is valid if κ = 0. But if κ > 0,

then standard two-step confidence intervals will have approximately correct width but

incorrect centering and will therefore have coverage below nominal coverage.

4 One-Step Strategy

In this section, we first discuss from a theoretical perspective the one-step strategy for

inference that overcomes the bias from the two-step strategy. While the idea is generic,

for concreteness we develop it within a specific model we call the Supervised Topic Model

with Covariates which extends the model presented in the previous section. Second,

we discuss the computational challenge of implementing the one-step strategy, which

we solve with Hamiltonian Monte Carlo (HMC) deployed on modern hardware systems.

This allows for highly scalable inference with minimal coding. More in-depth overviews of

HMC are provided in Neal (2012), Hoffman and Gelman (2014), and Betancourt (2018).

We are not aware of the application of HMC to topic models in the literature.

4.1 Supervised Topic Model with Covariates

The model for illustrating the one-step strategy again features the downstream regression

model (4) and the upstream topic model (5). But we further enrich the model to include a

probabilistic relationship between the topic shares θi and a vector of J covariates gi. The

covariates gi may or may not be the same as qi. We allow these additional dependencies

to enhance the applicability of the model, and to demonstrate how our computational

approach can perform inference for even complex models with relative ease.

Example: Monetary Policy Speeches (Continued). To return to the example of

Section 3, the downstream regression model (4) could capture how policymakers’ attention
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predicts policy actions controlling for economic conditions. But policymakers’ attention

can itself be a function of speaker characteristics such as demographic variables, or past

experience of economic conditions (Malmendier et al. 2021). Such variables would enter

gi but arguably not directly affect policy decisions beyond their effect on attention; i.e.,

they would not enter qi.

To capture dependence between θi and gi, we specify the distribution of θi conditional on

gi as logistic normal, though other specifications could also be used. The full model, which

we call the Supervised Topic Model with Covariates (STMC), is specified in Model 1.

θi ∼ LogisticNormal (Φgi, IKσ
2
θ)

xi ∼ Multinomial
(
Ci,B

Tθi
) (Upstream Topic Model)

Yi ∼ Normal
(
γTθi +αTqi, σ

2
Y

)
(Downstream Regression Model)

Model 1: Supervised Topic Model with Covariates

The additional parameters in Model 1 are a K × J matrix of coefficients Φ and scale

parameters σθ and σY . The kth row of Φ, denoted φk, captures how variation in covariates

maps to variation in the prevalence of the kth topic across observations. Hence, a number

of research questions can be addressed by performing inference on Φ. While we have

modeled the error terms in the downstream regression and upstream logistic normal as

homoskedastic to simplify presentation, this can easily be relaxed. Similarly, the logistic

normal and normal specifications can also be substituted for other distributions or quasi-

distributions as appropriate. For instance, one could use the sandwich quasi-likelihood

of Müller (2013).

To our knowledge, STMC is new in the literature. Roberts et al. (2014) presents a

model in which a logistic normal distribution over θi is parameterized by covariates but

without a downstream regression. Blei and McAuliffe (2010) and Ahrens et al. (2021)

present models in which linear combinations of topic shares explain a response variable,

but do not allow covariates to enter the distribution over θi. As such, we view STMC as

of independent interest in the literature on topic modeling, although its primary purpose

is to provide an example in which dimensionality reduction and linear regression are part

of the same joint model and one cares about doing valid inference on model parameters.

4.2 Inference Approach for One-Step Strategy

The components of Model 1 combine to give a likelihood l(xi, Yi,θi|Ci,gi,qi) for xi, Yi,

and θi conditional on Ci and covariates gi and qi. As θi is latent, we can integrate
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it out to obtain a likelihood l(xi, Yi|Ci,gi,qi) depending only on observable variables,

which can then be used for maximum likelihood estimation of model parameters δ =

(B,Φ,γ,α, σY , σθ). However, there are two challenges. First, the integration has no

closed-form solution and so must be performed numerically. Moreover, this numerical

integration is high-dimensional and must be done observation-by-observation. As such,

standard likelihood-based estimation is not computationally feasible.

The inference approach we take, while frequentist, is instead based on Bayesian com-

putation. The integration step is performed implicitly as part of the sampling procedure.

Similar approaches are taken to deal with latent states in Bayesian estimation of DSGE

models (Herbst and Schorfheide 2016). In this approach, Model 1 is supplemented with a

prior for δ. The latent θi are themselves treated as “parameters”, with the logistic normal

component of Model 1 acting as their prior. We sample from the posterior distribution

for δ and the θi given the observed data (xi, Yi, Ci,gi,qi)
n
i=1. The marginal draws for δ

represent draws from the posterior distribution for δ based on the integrated likelihood

l(xi, Yi|Ci,gi,qi).
It is important to emphasize that while our approach uses Bayesian computation, one

does in fact perform valid frequentist inference on model parameters δ using this method.

The maximum likelihood estimator δ̂ of δ is asymptotically normal under standard regu-

larity conditions (e.g., Theorem 5.41 of van der Vaart 1998). By the Bernstein–von Mises

Theorem (see Theorem 10.1 of van der Vaart 1998 and discussion), the posterior mean

δ̄ of δ is first-order asymptotically equivalent to the MLE δ̂. Moreover, the posterior

distribution of δ is asymptotically normal with mean δ̄ and variance (when appropriately

scaled with n) equal to the asymptotic variance of the MLE. As such, Bayesian credible

sets for δ—or any of its components such as γ—are valid frequentist confidence sets with

the desired asymptotic coverage. This approach is also efficient for inference on δ and

its components, as it is asymptotically equivalent to likelihood-based inference.

Following the literature on topic modeling, we specify the following standard prior

distributions for model parameters:

βk ∼ Dirichlet(η) ∀ k

φj,k ∼ Normal(0, σ2
φ) ∀ j, k

γk ∼ Normal(0, σ2
γ) ∀ k

αm ∼ Normal(0, σ2
α) ∀ m

σY ∼ Gamma(s0, s1)

(Priors)

If one so desires, these priors can be changed with one line of code in our implementation of

the inference algorithm explained below. In total, the model has eight hyperparameters:

the three σ terms in (Priors) as well as σ2
θ in (Upstream Topic Model); the symmetric
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Dirichlet parameter η in (Priors); the two Gamma distribution parameters in (Priors).

We emphasize again that the model and priors serve primarily as an illustration. An

interested researcher should be able to modify it as needed to accommodate different

data; to test robustness of the conclusions to specifying alternative distributions for the

data; or to test robustness with respect to choice of priors. The key is to avoid having

to re-derive complex inference algorithms every time the model is adjusted, and this is

precisely the main advantage of automatic inference methods we now describe.

4.3 Overview of the HMC Algorithm

Our problem is to sample from the posterior distribution q(ζ|(xi, Yi, Ci,gi,qi)ni=1) where

ζ = (δ, (θi)
n
i=1) are the STMC parameters. To do so, we use Hamiltonian Monte Carlo

(HMC), a modern Markov chain Monte Carlo (MCMC) algorithm that is particularly

well-suited to high-dimensional models.16 MCMC algorithms define a stochastic process,

i.e., a Markov chain, whose ergodic distribution coincides with the posterior distribution

one wishes to sample from. Samples from this Markov chain can be used to form estimates

of interest, e.g. the expected value of a model parameter under the posterior distribution,

as in Monte Carlo simulation. Efficient MCMC algorithms have low autocorrelation

across samples which improves the accuracy of the resulting estimates.

A popular and simple MCMC method is the Metropolis-Hastings (MH) algorithm.

Note the posterior is proportional to qn(ζ) := q(ζ, (xi, Yi)
n
i=1|(Ci,gi,qi)ni=1), which is

formed by multiplying the likelihood by the prior. The MH algorithm generates samples

from the posterior in two steps: (1) propose a new state ζ ′ from the current state ζ using

a pre-specified proposal distribution; then (2) accept the new proposal with a probability

that increases in the ratio qn(ζ ′)/qn(ζ). A challenge in practice is that the proposal

distribution must be chosen carefully to avoid slow convergence. Taking small steps in

a random direction can have a high acceptance probability but also high autocorrelation

across samples and slow convergence. Taking a large step in a random direction can

drastically reduce qn(ζ ′) and hence the acceptance probability.

The HMC algorithm addresses this problem by utilizing the geometry of qn to propose

distant states that nonetheless have high chance of acceptance. This is achieved by

proposing a new state ζ ′ by following Hamiltonian dynamics for a certain number of

steps, starting from the initial state ζ. This process is determined by the curvature of

qn, and so determining the path to follow requires evaluating the gradient of qn with

respect to the parameters ζ. The specific variant of HMC that we use is the No-U-Turn

Sampler (Hoffman and Gelman 2014, NUTS). The intuitive idea of NUTS is to follow the

16Gibbs sampling is often used in the topic modeling literature (Griffiths and Steyvers 2004). This is
difficult to implement for STMC because (i) the logistic normal prior is not conjugate to the multinomial
distribution and (ii) there are a large number of parameters in the model in realistic use cases.
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Hamiltonian dynamics for a random number of steps, and to stop when the path starts

to double back on itself. This is not only more efficient than following the dynamics for a

fixed number of steps, but also avoids the need to specify the number of steps in advance.

4.4 HMC and Probabilistic Programming

From an implementation perspective, an advantage of HMC is that it is amenable to

probabilistic programming. This allows one to define a data generating process for a

statistical model in computer code, after which sampling is performed “automatically” in

the background by following a generic set of algorithmic procedures adapted to the given

model. In practice, modern probabilistic programming libraries use automatic differenti-

ation to compute the gradients of highly flexible families of densities. Furthermore, the

density and gradient computations are typically parallelizable as they are additive with

respect to the data points.17 This facilitates the use of the same specialized hardware

normally used for machine learning tasks.

NUTS is implemented in many probabilistic programming libraries, the most popular

of which is Stan. For this paper, we instead use NumPyro (Phan et al. 2019), which

utilizes a state-of-the-art automatic differentiation engine Jax (Bradbury et al. 2018)

and allows users to easily deploy these computations to specialized hardware such as

Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs), resulting in a

dramatic improvement in computation time. Furthermore, NumPyro is a Python library,

not a standalone program, which means that it is easy to integrate with other libraries and

benefits from the host of functionalities that Python provides. This said, our goal is not to

advocate for any particular library, but to demonstrate that software and hardware have

evolved to a point that allows Bayesian computation to be performed at scale without

the need to manually derive sampling equations.

Appendix C displays the NumPyro code needed to draw samples from the posterior

distribution of STMC. The core code is only several dozen lines long, and individual

elements can be quickly modified to specify alternative distributional assumptions or

new models.

5 Empirical Results

In theory, the one-step strategy should outperform the two-step strategy, but establishing

the empirical relevance of the bias that the latter produces is clearly important. While

our computational approach makes the one-step strategy straightforward to implement,

17More precisely, the logarithm of qn is additive with respect to the data points, and the gradient of
the logarithm of qn is the sum of the gradients of the log-likelihood and the logarithm of the prior.
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easier still would be for applied researchers to continue to use off-the-shelf packages for

information retrieval and then to import the outputs into familiar regression software.

This section establishes that there is indeed a quantitatively meaningful difference in

regression parameter estimates produced by the two methods, both in simulated and

actual data. Moreover, the differences we observe are consistent with the key theoretical

results established above. This highlights the broad relevance of the one-step strategy

for the empirical literature.

In all exercises, we perform inference using HMC applied to the Supervised Topic

Model with Covariates with hyperparameters detailed in Appendix B. We choose K = 2

which implies that each observation’s topic share vector can be written θi = (θi, 1− θi).
For the one-step strategy, we sample from the posterior distribution implied by the full

structure of STMC. For the two-step strategy, we first sample from (Upstream Topic Model)

and include only a constant in gi. This allows for θi to have an asymmetric prior, while

ignoring any covariates that enter the upstream model. We use the sampled values of θi to

compute an estimate θ̂i of the posterior mean. We then estimate the following regression

models using HMC:

log

(
θ̂i

1− θ̂i

)
= φ0 + φT1 gi + ui, (12)

Yi = γ0 + γ1θ̂i +αTqi + εi, (13)

where the error terms are drawn from normal distributions whose variances are assumed

the same as in the one-step strategy. The prior distributions over the regression co-

efficients are also the same in both strategies. This procedure is designed to emulate

the typical approach in the empirical literature while ensuring that any observed differ-

ences between the two strategies are not driven by different inference methods or implicit

modeling choices.

Finally, our focus here is on inference rather than identification. Ke et al. (2021) high-

light that the parameters of topic models are generally set- rather than point-identified.

To restore point identification, a common assumption in the machine learning literature is

the existence of “anchor words” (Arora et al. 2012) which we adopt as explained below.18

5.1 Simulation

We start by reporting the results of a simulation exercise which we designed to illustrate

the evolution of bias in the regression coefficients across different values of κ, as well as to

18An alternative approach would be to dispense with the anchor words assumption, thereby allowing
for the possibility of partial identification, and use an identification-robust method for constructing
confidence sets based on the HMC draws as in Chen et al. (2018).
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show the coverage of confidence intervals for both the one-step and two-step strategies.

We simulate the data according to the data generating process described in Model (1).19

We conduct three sets of simulations. Within each set, the amount of unstructured data

per observation is the same for all observations and equal to Ci = C ∈ {20, 80, 160}.
Together with the total number of observations, n = 6400, this implies κ ∈ {4, 1, 0.5},
for the three sets of simulations, respectively. We conduct 120 simulations in total, 40

for each set. Further details are included in Appendix B. We focus on the estimation of

two coefficients: (1) γ1, the effect of the increase in θi on Yi; and (2) φ1, the effect of a

numerical covariate in (12). While our general theoretical results in Section 3 apply to

inference on γ1 for the two-step strategy, Proposition 2 shows that one should expect a

bias for φ1 that is also increasing in κ.

To illustrate that the difference between the one-step and two-step strategies is due to

mis-measurement of θi, we also estimate the regression coefficients using the true (known)

values θi as an input, as opposed to the estimated values. This approach is, of course,

not feasible in practice, but it allows us to isolate the effect of mis-measurement of θi on

the regression coefficients.

The results are presented in Figure 1. Each panel shows the coverage rates of confi-

dence intervals for different parameter values: the share of simulations in which the values

of the parameters are included in the 95% confidence intervals. The grey vertical dashed

lines show the true value of the parameter, for which coverage is close to nominal coverage

(i.e., 95%). The blue vertical dashed line represents the median (across simulations) of

mean posterior estimates. The two top panels show the results for the set of simulations

where the amount of unstructured data is the smallest and so κ = 4 is relatively large.

The theory in Section 3 suggest that in this case we should expect the two-step strategy

to perform badly. This is indeed the case. The median (across simulations) estimate of

γ1 in top left, and φ1 in top right, are both substantially biased towards zero. Further,

as predicted by theory, the width of the CIs using the two-step strategy is similar to the

infeasible estimator that uses the true θi. This, together with the bias, means that the

CIs based on the two-step strategy under-cover. For γ1 the true value is included in the

95% CI in only 32/40 (80%) of simulations. For φ1 this looks even worse: the true value

is never included in the CIs.

On the other hand, the one-step strategy performs well. The estimates appear un-

biased, and the CIs have close to expected coverage. The coverage is 92.5% for γ1 and

100% for φ1. The difference from 95% is expected given the relatively low number of

simulations we performed (40 per configuration). The difference between the lengths of

19We impose the anchor word assumptions in the simulation in the following way. After we draw β1

and β2 from symmetric Dirichlet priors, we zero out 100 random features from β1 and β2, respectively,
such that no feature is zeroed out in both distributions. Data is then simulated from these modified
topic-feature distributions.
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Note: Each line presents the share of simulations in which the value of γ1/φ1 on the x-
axis was included in the 95% confidence interval. The grey vertical dashed lines show the
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simulations) of mean posterior estimates. The bias reported is the difference between the
truth and this median as computed for the two-step strategy.

Figure 1: Evolution of Bias in Regression Coefficients across κ Values
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CIs using the one-step strategy and those using the infeasible estimator is small but no-

ticeable. In the former, θi is recognized as latent and the uncertainty in θi is accounted

for when performing inference on γ1 and φ1. The resulting CIs are approximately 10%

wider than those obtained with the infeasible estimator that uses the true θi.

Moving down from the top panels, we can see the evolution of bias and coverage as the

amount of unstructured data per observation, C, increases and κ decreases. As predicted

by theory, the bias in the two-step strategy becomes smaller as κ decreases. Increasing C

from 20 in the top panels to 80 in the middle reduces the absolute value of median bias in

the two-step estimate of γ1 by about half, while the width of a typical CI virtually does

not change, resulting in a large increase in CI coverage. A similar patters is observed

for φ1. Meanwhile, the one-step strategy continues to perform well and one-step CIs are

now indistinguishable from (infeasible) CIs based on the true θi. Finally, in the bottom

panels, where C = 160 and κ = 0.5, the pattern continues. The bias in the two-step

strategy is now very small for γ1, though still noticeable for φ1.

Overall, the simulations confirm the three main insights from Theorem 2: (1) there

is a first order bias in the two-step strategy, which is driven by the mis-measurement of

θi; (2) the bias is larger when κ is larger; (3) the width of the confidence intervals is

not substantially affected by mis-measurement of θi. The simulations also show that the

one-step strategy performs well, and so it is a viable alternative to the two-step strategy.

The one-step strategy is not only theoretically sound, but also leads to substantially less

biased inference in practice.

Finally, a word on the computational performance is in order. We have found that

Numpyro’s HMC implementation of the STMC model is fast—each simulation took ap-

proximately 4 minutes when estimated on a single mid-range professional GPU, the Nvidia

V100. As such, we think that the one-step strategy is feasible for most researchers, and

that the computational cost is not a major concern.

5.2 CEO Behavior

To show that modeling joint dependence and estimating jointly matters in practice, we

revisit the study of Bandiera et al. (2020), which collects and analyzes data on CEO time

use in a sample of manufacturing firms in several countries. The goal of that paper is to

describe salient differences in executive time use, and to relate those differences to firm

and CEO characteristics as well as firm outcomes.

The estimation sample consists of 916 CEOs, each of whom participated in a survey

that recorded features of time use in each 15-minute interval of a given week, e.g. Monday

8am-8:15am, Monday 8:15am-8:30am, and so forth. The recorded categories are (1) the

type of activity (meeting, public event, etc.); (2) duration of activity (15m, 30m, etc.);
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(3) whether the activity is planned or unplanned; (4) the number of participants in the

activity; (5) the functions of the participants in the activity (HR, finance, suppliers, etc.).

In total there are 654 unique combinations of these categories observed in the data. We

let xi,j denote the number of times feature j appears in the time use diary of CEO i. The

average value of Ci is 88.4, with a minimum of 2 and a maximum of 222. Bandiera et al.

(2020) uses LDA with K = 2 dimensions to organize the time use data. The authors refer

to the separate distributions over time use combinations β1 and β2 as pure behaviors. The

share of CEO i’s time devoted to pure behavior 1, θi, is referred to as the CEO index.

The authors use the following inference procedure. First, estimate LDA on the time

use data using the collapsed Gibbs sampler of Griffiths and Steyvers (2004), then form an

estimate θ̂i based on the posterior means. They then use θ̂i as an input into productivity

regressions where Yi is the log of firm i sales, and qi is a vector of firm observables.

Further, they separately analyzed which CEO and firm characteristics are associated

with behaviors by regressing θ̂i on a vector of characteristics gi.

We reexamine these questions using the Supervised Topic Model with Covariates. To

explain CEO behavior, in gi we include log employment (a measure of firm size) and an

indicator for whether or not the CEO has completed an MBA degree. To explain sales,

in qi we include the log of firm employment and fixed effects for year and country. As

before, we use HMC for inference and the same priors for both stratgies.20 Exception for

the Dirichlet concentration parameter η, the priors used are the same as in the simulation

exercise which are reported in Appendix Table B.1. We set η = 0.1, which is what the

authors of the original paper used.

As we demonstrated both theoretically and through the simulation exercise, the key

quantity that governs the relative importance of sampling error and measurement error

is κ. In the context of the CEO behavior data, the empirical analog of κ is the product of

the square root of the number of observations (CEOs) and the average value of the inverse

of the number of activities per CEO. This value is 0.44 in the CEO behavior data, which

is close to the lowest value of κ encountered in the simulation exercise. This suggests that

the two-step approach should perform relatively well in this application. To further test

our theory, we also estimated the model using data where we first sampled 10% of the

activities for each CEO, without replacement. This scenario could represent a researcher

observing only half of a workday for each CEO, instead of a full five-day workweek. Such

sampling increases the analogue of κ to 4.26, which is near the highest value of κ in the

simulation exercise, indicating that we should expect the two-step approach to perform

poorly under these conditions.

Turning to results, in Table 1 we report the relative probability of observing certain

20We impose the anchor word assumption by zeroing out from β1 (β2) the activity that is relatively
least likely in Pure Behavior 1 (2).
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Table 1: Comparison of types (Pure Behaviors)

Activity 1-step 2-step Bandiera et al (2020)

Plant Visits 0.1 0.09 0.11
Suppliers 0.41 0.44 0.32
Production 0.41 0.32 0.46
Just Outsiders 0.72 1.37 0.58
Communication 1.54 1.15 1.49
Multi-Function 1.4 1.17 1.9
Insiders and Outsiders 1.9 1.67 1.9
C-suite 21.57 13.01 33.9

Note: This table reports the relative probability of observing certain
activities between Pure Behavior 1 and Pure Behavior 2. The value of 1
indicates that this activity is equally likely under both Pure Behaviors.
Values higher than 1 mean that this type of activity is more likely to be
performed under Pure Behavior 1. The values are reported in columns (1)
and (2) are computed by first obtaining mean posterior probabilities of
each activity in the given types. In column (3) we report values presented
in Bandiera et al. (2020).

activities between Pure Behavior 1 and Pure Behavior 2. The table shows that estimated

pure behaviors obtained with one-step and two-step approaches are very similar. What is

more, they are also similar to those obtained with LDA and reported in the original paper.

The table suggests that interacting with C-Suite, spending time communicating, and

holding multi-function meetings are much more likely under Pure Behavior 1. Conversely,

spending time on plant visits and interacting solely with suppliers are more likely under

Pure Behavior 2. Based on these observations, the original authors label the CEOs with

high values of θ̂i as leaders and those with low values as managers.

In terms of the regression coefficient estimates, we find patterns that are consistent

with theory and the simulation results. In Table 2, we report the estimates of the regres-

sion coefficients under the two-step and one-step strategies. In Panel (a), we show the

estimates for the downstream model, γ1, and in Panel (b), we show the estimates for the

upstream model, φ1. In both panels, columns (1) and (2) report the estimates obtained

using one- and two-step strategies, respectively, for the full sample. The coefficient on the

CEO index in the downstream model is equal to 0.4 and 0.402, respectively, in the two

strategies; the CIs have a similar length and exclude 0. Thus, both strategies suggest that

a larger share of time spent on Pure Behavior 1 is associated with higher firm productiv-

ity. In the upstream model, we see larger differences between the two strategies. While

having an MBA and managing larger firms are both associated with a higher CEO index,

the point estimates differ substantially. As suggested in the simulations, there appears

to be a downward bias in the two-step strategy: for instance, the coefficient on the MBA

dummy is equal to 0.307 in the two-step strategy, compared to 0.606 in the one-step
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Table 2: Regression Coefficient Estimates under Alternative Model Specifications

Dependent variable: Log(sales)

(1) 2-Step (2) 1-Step (3) 2-Step (4) 1-Step

CEO Index 0.4 0.402 0.211 0.439
(0.219, 0.572) (0.240, 0.603) (-0.028, 0.449) (0.153, 0.711)

Log Employment 1.212 1.198 1.239 1.199
(1.159, 1.268) (1.154, 1.248) (1.186, 1.29) (1.148, 1.26)

Controls X X X X

Activities’ Sample Full Full 10% 10%

(a) Downstream Model: CEO Index and Firm Productivity

Dependent variable: Un-normalized CEO index

(1) 2-Step (2) 1-Step (3) 2-Step (4) 1-Step

MBA 0.307 0.606 0.118 0.323
(0.176, 0.437) (0.446, 0.743) (-0.012, 0.249) (0.107, 0.486)

Log Employment 0.356 0.492 0.154 0.443
(0.306, 0.406) (0.432, 0.548) (0.104, 0.204) (0.376, 0.507)

Controls X X X X

Activities’ Sample Full Full 10% 10%

(b) Upstream Model: MBA and CEO Index

Note: In parentheses we report symmetric (equal-tailed) 95% confidence interval.

strategy. The CIs are marginally wider in the one-step strategy (0.297 vs. 0.261), but as

the theory predicts, the difference is not substantial. Note there is no overlap in the CIs

for these coefficients: the one-step CIs lie entirely to the right of the two-step CIs.

The differences between the strategies are substantially more pronounced when we

consider the estimates obtained using the 10% subsample of unstructured data. Under

the one-step strategy, the empirical conclusions are largely the same as when using the

full data. For example, the point estimate on γ1 changes from 0.402 to 0.439. While the

confidence intervals are 54% wider than when using the full data (reflecting the increased

uncertainty in estimated θi), there is still a strong estimated relationship between CEO

behavior and firm performance. This is not so with the two-step strategy: the point esti-

mate of γ1 is now halved to 0.211, and the CI includes 0. Likewise, in the upstream model,

the estimate of the coefficient on the MBA remains large and statistically significant in

the one-step strategy, but is reduced by 62% and is no longer statistically significant in

the two-step strategy. This is consistent with the theory and simulation results, which

suggest that the two-step strategy should perform poorly in this scenario.

What explains the differences in the estimates? To answer this question, we plot the

estimated CEO indices in Figure 2. Panel (a) plots the estimated CEO indices obtained
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Note: Each point represents the mean posterior estimate of a single CEO’s index, θ̂i. The
blue line is the local polynomial fit (with confidence intervals) obtained with ‘ggplots’s’
‘geom smooth’ with default parameters.

Figure 2: Scatterplots of estimated CEO indices θ̂i

using the full sample, while Panel (b) plots the estimated CEO indices obtained using

the 10% subsample. The blue line represents the local polynomial fit (with confidence

intervals). The figure shows that when the full sample is used, both strategies find a

large number of CEOs with θ̂i close to 0 and 1, and a strong correlation between the two

estimates. However, the correlation is much weaker for the 10% subsample, suggesting

that there is a large scope for mis-measurement of θi. Interestingly, Proposition 2 suggests

that the bias in the two-step estimate of φ1 can be severe when θi has mass near 0 and

1, as appears to be the case in this dataset. This provides an explanation for why the

two-step strategy produces smaller estimates of φ1 even in the full dataset.

Taken together, both the simulation results and the analysis of CEO behavior data

highlight the importance of having a large amount of unstructured data per observation.

Without it, the coefficients estimated using the two-step strategy can be badly biased,

which can lead to incorrect empirical conclusions. The good statistical and computational

performance of the one-step strategy make it attractive to guard against this risk.

6 Conclusion

The leading strategy for analyzing unstructured data uses two steps. First, quantitative

representations of unstructured data are extracted in an information retrieval step. Sec-
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ond, the derived quantitative representations are plugged into downstream econometric

models, with the representations treated as regular numerical data for the purposes of

estimation and inference. This paper highlights, both theoretically and in simulations, a

previously unrecognized problem with this popular two-step strategy: measurement error

introduced in the first step leads to biased estimates and invalid inference for downstream

regression coefficients. The degree of bias, and therefore the degree to which it distorts

inference, depends on the relative importance of measurement error and sampling error,

but it can be material in applications. To guard against it, we propose a robust infer-

ence method based on maximum likelihood estimation of the information retrieval and

regression models jointly. We implement this one-step strategy using Hamiltonian Monte

Carlo deployed on modern hardware. This strategy outperforms the two-step strategy in

simulations and generates quantitatively important differences in a leading application.

While we develop theoretical arguments within a simple regression model, we posit the

same effects will arise in more elaborate downstream econometric models. For example,

an emerging line of research uses text-derived sentiment indices as inputs into forecast-

ing models with a vector autoregressive or dynamic factor structure. Straightforward

extensions of our theoretical arguments can be used to show how error in the indices

will bias coefficient estimates and limit the effectiveness of these forecasting methods.

More constructively, the one-step strategy can be used to enhance the performance of

these forecasting methods. Likewise, the industrial organization literature is increasingly

using embedded representations of firms and products to characterize market behavior

and demand with structural models. Our one-step strategy can be used to mitigate

bias introduced by measurement error in the embeddings in these and other cases where

the downstream model has a likelihood formulation. Going forward, it is important to

establish for which specific information retrieval methods and econometric models does

measurement error most severely affect inference.

Finally, we note there are limits on the scalability of Hamiltonian Monte Carlo, even

when fully optimized. When one confronts a vast amount of data, alternative approaches

for approximating the joint distribution in the one-step strategy must be used. One popu-

lar choice in computer science is variational inference (VI; Jordan et al. 1998, Wainwright

and Jordan 2008) which has recently seen applications in economics (Bonhomme 2021,

Olenski and Sacher 2022, Mele and Zhu 2023).21 From an implementation perspective, VI

is no more complicated than HMC because it too can be formulated within probabilistic

programming languages that rely on automatic differentiation (Hoffman et al. 2013).22

However, VI has fewer statistical guarantees than HMC. In ongoing work, we are studying

21Recently, scalable extensions of HMC that are based on stochastic approximations of gradients have
shown initial promise (Dang et al. 2019).

22For an example, see https://num.pyro.ai/en/stable/tutorials/tbip.html which illustrates a
VI implementation of the Text-Based Ideal Points model (Vafa et al. 2020).
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how to best perform scalable inference in the one-step strategy with massive data.
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A Proofs

Notation Let ‖ ·‖ denote the Euclidean norm when applied to vectors and the spectral

norm when applied to matrices. Let ‖ · ‖F denote the Frobenius norm.

A.1 Proofs for Section 2

Proof of Proposition 1. We start by writing

√
n(γ̂1 − γ1) =

1√
n

∑n
i=1(Yi − γ1(θ̂i −

¯̂
θ))(θ̂i − ¯̂

θ)

1
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θ)2

= −γ1
1√
n
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¯̂
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1
n

∑n
i=1(θ̂i −

¯̂
θ)2

+
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n

∑n
i=1 εi(θ̂i −

¯̂
θ)

1
n

∑n
i=1(θ̂i −

¯̂
θ)2

=: T1,n + T2,n,

where
¯̂
θ = 1

n

∑n
i=1 θ̂i. Note by Chebyshev’s inequality that for integers k1, k2 ≥ 0 and any

t > 0, we have
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θ̂k1i θ
k2
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k2
i ]
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t2n
.

Consider the denominator term in T1,n and T2,n. By Chebyshev’s inequality, we have∣∣∣∣∣ 1n
n∑
i=1

(θ̂i − ¯̂
θ)2 − Var(θ̂i)

∣∣∣∣∣→p 0,

where, by the law of total variance and independence of Ci and θi,
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]
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A second application of Chebyshev’s inequality gives
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Hence,
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.

For T2,n, we have∣∣∣∣∣ 1√
n

n∑
i=1
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because (ˆ̄θ−E[θi])× 1√
n

∑n
i=1 εi →p 0. Note that E[εi(θ̂i−θi)] = 0 because Yi and (Xi, Ci)

are independent conditional on θi and both εi and θ̂i − θi have conditional (on θi) mean

zero. Hence by Chebyshev’s inequality, for any t > 0 we have
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because εi and (Xi, Ci) are independent conditional on θi, Ci and θi are independent, and
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→ 0. Finally, 1√

n

∑n
i=1 εi(θi − E[θi]) is asymptotically N(0,E[ε2i (θi − E[θi])

2]) by

the central limit theorem. �

The next assumption is used to derive Proposition 2.

Assumption 3. (i) Var(Zi) > 0, E[Z2
i ] <∞, and E[u2i (Zi − E[Zi])

2] <∞.

(ii) Pr(θi ∈ [δ, 1− δ]) = 1 for some δ > 0.

(iii) Ci & (log n)1+ε almost surely for some ε > 0.

Part (i) is standard and ensures the OLS estimator of φ1 without measurement error

is well defined with finite asymptotic variance. Part (ii) is made to simplify technical

arguments and can be relaxed, e.g., by controlling the rate at which the distribution of θi

behaves at the boundary of its support. Finally, part (iii) is the same as Assumption 2(v)

and is also made to simplify technical derivations and can be relaxed.

Proof of Proposition 2. To simplify notation, let Yi = log
(

θi
1−θi

)
and Ŷi = log

(
θ̂i

1−θ̂i

)
.
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We have
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where Z̄ = 1
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∑n
i=1 Zi. It follows by standard arguments that under Assumption 3(i), we

have

T1,n →d N
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E [u2i (Zi − E[Zi])
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Var(Zi)2

)
and 1

n

∑n
i=1(Zi − Z̄)2 →p Var(Zi).

It remains to characterize the numerator of T2,n. To this end, first note that with δ

as in Assumption 3(ii), we have
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∣∣∣Ci, θi) (almost surely)
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i=1

e−
1
8
Ciθi (almost surely)

≤ ne−
1
8
δc(logn)1+ε (almost surely),

where the first inequality is by the union bound, the second is by Assumption 3(ii), the

third is by Chernoff’s inequality for Binomial random variables, and the fourth is because

Ci ≥ c(log n)1+ε for some c > 0 and θi ≥ δ both hold for all i with probability one by

Assumptions 3(ii) and 3(iii). Therefore,

Pr

(
min
1≤i≤n

θ̂i < δ/2

)
≤ ne−

1
8
δc(logn)1+ε → 0. (14)

We may similarly deduce that

Pr

(
max
1≤i≤n

θ̂i > 1− δ/2
)
→ 0, (15)

and that

max
1≤i≤n

∣∣∣θ̂i − θi∣∣∣→p 0. (16)

In view of Assumption 3(ii), condition (16) also implies that max1≤i≤n |Ŷi − Yi| →p 0

because x 7→ log( x
1−x) is uniformly continuous on [δ, 1 − δ]. But then note that this
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implies

1√
n
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i=1
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|Ŷi − Yi||
√
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by Assumption 3(i). It therefore remains to show
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.

By Taylor’s theorem, we have

Ŷi − Yi =
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where θ̃i is between θi and θ̂i. Note that Assumption 3(ii) implies that θi(1 − θi) ≥ δ2.

We also have by (14) and (15) that θ̃i(1 − θ̃i) ≥ δ2/4 with probability approaching one

(wpa1). Thus, all terms on the right-hand side are well defined wpa1. We control the

covariance of Zi with these terms using E[θ̂i|θi] = θi and Var(θ̂i|θi, Ci) = C−1i θi(1 − θi)
and the fact that (Xi, Ci) and Zi are independent conditional on θi as follows:

First, by Chebyshev’s inequality, we have for t > 0 that

Pr
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2
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→ 0

by (3), independence of (Xi, Ci) and Zi conditional on θi, and independence of Ci and

(θi, Zi). Second, we similarly have

√
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Moreover, letting Wi = (2θi−1)(θ̂i−θi)2
2θ2i (1−θi)2

(Zi−E[Zi]) and noting |2θi− 1| ≤ 1 and |θ̂i− θi| ≤ 1

because θi, θ̂i ∈ [0, 1], we have by Chebyshev’s inequality that for t > 0,
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Finally, because θ̃i ∈ [δ/2, 1 − δ/2] holds for all 1 ≤ i ≤ n wpa1, there is a positive

constant D such that∣∣∣∣∣ 1√
n

n∑
i=1

(−3θ̃2i + 3θ̃i − 1)(θ̂i − θi)3
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(θ̂i − θi)2|Zi − E[Zi]|

)

holds wpa1. Hence, in view of (16), it suffices to show that the right-hand side term is

bounded in probability. To this end, note by Markov’s inequality that for t > 0,

Pr
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t
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as required. �

A.2 Proofs for Section 3

The next two lemmas apply in both fixed-populations and sequences-of-populations.

Lemma 1. Suppose that (5) holds and that θi and Ci are independent. Then

E
[
p̂ip̂

T
i

]
= BTE
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θiθ

T
i
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E
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T
i B
)]
.

In addition, if E[Yi|θi] = γTθi and Yi and xi are independent conditional on (Ci,θi), then

E [p̂iYi] = BTE
[
θiθ

T
i

]
γ.

Proof of Lemma 1. First note by (5) that

E
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,
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where the second-last line follows from the mean and variance of the multinomial distri-

bution and the final line is by independence of θi and Ci. For the second result, using

conditional independence of Yi and xi given (Ci,θi), we have

E
[

xiYi
Ci

]
= E

[
E
[

xi
Ci

∣∣∣∣Ci,θi]E [Yi|Ci,θi]
]

= E
[
BTθiE [Yi|Ci,θi]

]
= BTE [θiE [Yi|θi]]

= BTE
[
θiθ

T
i

]
γ,

as required. �

Lemma 2. Let B have full rank and let Assumptions 1(ii) and 1(iii) hold. Then∣∣∣∣∣ 1n
n∑
i=1

θ̂i θ̂
T
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Proof of Lemma 2. In view of Assumption 1(iii), we have∣∣∣∣∣ 1n
n∑
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θ̂i θ̂
T
i − (B̂B̂T )−1B̂
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where (B̂B̂T )−1 exists with probability approaching one by Assumption 1(ii) and because

B has full rank. Each element of p̂i p̂
T
i is bounded between 0 and 1, so we may deduce

by Chebyshev’s inequality that∣∣∣∣∣ 1n
n∑
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p̂ip̂
T
i − E

[
p̂ip̂

T
i

]∣∣∣∣∣→p 0.

Hence by Assumption 1(ii) and Slutsky’s theorem, we have∣∣∣∣∣ 1n
n∑
i=1

θ̂i θ̂
T
i − (BBT )−1BE

[
p̂ip̂

T
i

]
BT (BBT )−1

∣∣∣∣∣→p 0.

The result follows by Lemma 1. �

Proof of Theorem 1. First consider the denominator. By Lemma 2, we have

1

n

n∑
i=1

θ̂i θ̂
T
i →p E

[
θiθ

T
i

]
+ E

[
1

Ci

] (
(BBT )−1B diag(BTE[θi])B

T (BBT )−1 − E
[
θiθ

T
i

])
.

(17)
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For the numerator term, again by Assumption 1(iii), we have

1

n

n∑
i=1

θ̂iYi = (B̂B̂T )−1B̂

(
1

n

n∑
i=1

p̂iYi

)
+ op(1),

where by the LLN and Lemma 1, we have

1

n

n∑
i=1

p̂iYi →p E [p̂iYi] = BTE
[
θiθ

T
i

]
γ.

It follows by Assumption 1(ii) and Slutsky’s theorem that

1

n

n∑
i=1

θ̂iYi →p E
[
θiθ

T
i

]
γ . (18)

The first result follows from (17) and (18). Note that the matrix on the right-hand side

of (17) is bounded below (in Loewner order) by E
[
θiθ

T
i

]
so its inverse is well defined

by Assumption 1(i). The second result follows from the approximation (A + ∆)−1 =

A−1 −A−1∆A−1 +O(‖∆‖2) for A invertible and ∆ small. �

Proof of Theorem 2. First consider the denominator term. By Lemma 2 and condition

(7), we have 1
n

∑n
i=1 θ̂i θ̂

T
i →p E[θiθ

T
i ]. Hence, by Assumption 2(i),∣∣∣∣∣∣

(
1

n

n∑
i=1

θ̂i θ̂
T
i

)−1
− E[θiθ

T
i ]−1

∣∣∣∣∣∣→p 0. (19)

Now consider the numerator term. We first write

1√
n

n∑
i=1

θ̂i (Yi − θ̂Ti γ) =
1√
n

n∑
i=1

θ̂i(θi − θ̂i)Tγ +
1√
n

n∑
i=1

θ̂iεi =: T1,n + T2,n.

Consider term T1,n. By Assumption 2(iii), we have

|T1,n − T1,n,a − T1,n,b| →p 0

where

T1,n,a = (B̂B̂T )−1B̂

((
1

n

n∑
i=1

p̂ip
T
i

)
√
n
(
BT (BBT )−1 − B̂T (B̂B̂T )−1

))
γ

T1,n,b = (B̂B̂T )−1B̂

(
1√
n

n∑
i=1

p̂i(pi − p̂i)
T

)
B̂T (B̂B̂T )−1γ.
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Assumptions 2(i) and 2(ii) together imply that
√
n(BT (BBT )−1 − B̂T (B̂B̂T )−1) →p 0,

from which it follows that T1,n,a →p 0. For term T1,n,b note that

E
[
p̂i (p̂i − pi)

T
]

= E
[
(p̂i − pi) (p̂i − pi)

T
]

= E

[
E

[(
xi
Ci
− pi

)(
xi
Ci
− pi

)T ∣∣∣∣∣Ci,θi
]]

= E
[

diag(BTθi)−BTθiθ
T
i B

Ci

]
= E

[
1

Ci

] (
diag

(
BTE [θi]

)
−BTE

[
θiθ

T
i

]
B
)
. (20)

Let Xi = p̂i (p̂i − pi)
T − E

[
p̂i (p̂i − pi)

T
]
. Then

E

∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
2

F

 =
1

n

V∑
j=1

V∑
k=1

E
[
(Xi)

2
j,k

]

≤ 1

n

V∑
j=1

V∑
k=1

E
[
(p̂i,j)

2 (p̂i,k − pi,k)
2]

≤ 1

n

V∑
k=1

E
[
(p̂i,k − pi,k)

2] ≤ 1

n
E
[
C−1i

]
,

where the second inequality is because p̂i is in the simplex and the third inequality is by

(20). Hence it follows by Chebyshev’s inequality that∥∥∥∥∥ 1√
n

n∑
i=1

Xi

∥∥∥∥∥
F

= Op

(
E
[
C−1i

]1/2)
,

and so ∣∣∣∣∣ 1√
n

n∑
i=1

p̂i(pi − p̂i)
T −
√
nE

[
p̂i (p̂i − pi)

T
]∣∣∣∣∣→p 0.

Finally, by (7), (20), and Assumption 2(ii) we conclude that

T1,n →p −κ
(
(BBT )−1B diag(BTE[θi])B

T (BBT )−1 − E[θiθ
T
i ]
)
γ. (21)

Now consider term T2,n. Again by Assumption 2(i)-(iii), we have∣∣∣∣∣T2,n − (BBT )−1B

(
1√
n

n∑
i=1

p̂iεi

)∣∣∣∣∣→p 0.
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Consider the sum in parentheses. The summands have mean zero (by (4)) and variance

E
[
ε2i p̂ip̂

T
i

]
= E

[
E
[
ε2i
∣∣Ci,θi]E [ p̂ip̂Ti ∣∣Ci,θi]]

= E
[
E
[
ε2i
∣∣θi](pip

T
i +

1

Ci

(
diag(pi)− pip

T
i

))]
= E

[
ε2ipip

T
i

]
+ E

[
1

Ci

]
E
[
ε2i
(
diag(pi)− pip

T
i

)]
. (22)

In the above derivation, the first equality uses conditional independence of Yi and xi given

(Ci,θi), the second uses independence of Yi and Ci and the fact that xi is multinomial,

the third uses independence of Ci and (Yi,θi). Finally, in view of (7), we obtain

(BBT )−1BE
[
ε2i p̂ip̂

T
i

]
BT (BBT )−1 → E

[
ε2iθiθ

T
i

]
.

Note the right-hand side matrix has full rank by Assumption 2(i). Moreover, as p̂i takes

values in the simplex, we have ‖(BBT )−1Bp̂iεi‖ ≤ ‖(BBT )−1B‖|εi|. Hence, for all t > 0,

E
[∥∥(BBT )−1Bp̂iεi

∥∥2 I [∥∥(BBT )−1Bp̂iεi
∥∥ > t

√
n
]]
→ 0

by Assumption 2(iv). It follows by the Lindeberg–Feller central limit theorem that

T2,n →d N
(
0,E

[
ε2iθiθ

T
i

])
. (23)

Result (8) now follows by combining (19), (21), and (23).

For result (9), it remains to show

1

n

n∑
i=1

ε̂2i θ̂i θ̂
T
i →p E

[
ε2iθiθ

T
i

]
.

To this end, first note that in view of Assumption 2(iii) we have∣∣∣∣∣ 1n
n∑
i=1

ε̂2i θ̂i θ̂
T
i − (B̂B̂T )−1B̂

(
1

n

n∑
i=1

ε̂2i p̂ip̂
T
i

)
B̂T (B̂B̂T )−1

∣∣∣∣∣→p 0.

Write
1

n

n∑
i=1

ε̂2i p̂ip̂
T
i =

1

n

n∑
i=1

ε2i p̂ip̂
T
i +

1

n

n∑
i=1

(ε̂2i − ε2i )p̂ip̂Ti =: T3,n + T4,n.

First consider term T3,n. By (22) we have

E[T3,n]→ BTE
[
ε2iθiθ

T
i

]
B.
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Moreover, for any positive constant M we can write

T3,n − E[T3,n] =
1

n

n∑
i=1

(
ε2+,ip̂ip̂

T
i − E

[
ε2+,ip̂ip̂

T
i

])
+

1

n

n∑
i=1

(
ε2−,ip̂ip̂

T
i − E

[
ε2−,ip̂ip̂

T
i

])
=: T3,n,a + T3,n,b,

where ε+,i = εiI[|εi| ≤ M ] and ε−,i = εiI[|εi| > M ]. For term T3,n,a, note that the

summands have mean zero, satisfy

∥∥ε2+,ip̂ip̂Ti − E
[
ε2+,ip̂ip̂

T
i

]∥∥ ≤ 2M2,

and ∥∥∥E [(ε2+,ip̂ip̂Ti − E
[
ε2+,ip̂ip̂

T
i

])2]∥∥∥ ≤ ∥∥∥E [(ε2+,ip̂ip̂Ti )2]∥∥∥ ≤M2E
[
ε2i
]
,

because ‖p̂i‖ ≤ 1. Applying Theorem 1.4 of Tropp (2012), for any t > 0 we have

Pr (‖T3,n,a‖ > t) ≤ V exp

(
−t2n2/2

nM2E [ε2i ] + 2M2tn/3

)
→ 0

provided M2/n→ 0 as n→∞. For T3,n,b, we have

E[‖T3,n,b‖] ≤ 2E
[∥∥ε2−,ip̂ip̂Ti ∥∥] ≤ 2E

[
ε2i I[|εi| > M ]

]
≤ 2

E
[
ε2+δi I[|εi| > M ]

]
M δ

→ 0

as M → ∞ by Assumption 2(iv). In particular, choosing M = n1/4 ensures that both

T3,n,a and T3,n,b are asymptotically negligible in which case T3,n →p BTE
[
ε2iθiθ

T
i

]
B and

so

(B̂B̂T )−1B̂ (T3,n) B̂T (B̂B̂T )−1 →p E
[
ε2iθiθ

T
i

]
by Assumptions 2(i) and 2(ii).

Now consider T4,n. As ‖p̂i‖ ≤ 1, we have

‖T4,n‖ ≤
1

n

n∑
i=1

|ε̂2i − ε2i |.

But note that ε̂i − εi = θ̂Ti (γ̂ − γ) + (θ̂i − θi)Tγ, where

max
1≤i≤n

∣∣∣θ̂Ti (γ̂ − γ)
∣∣∣ ≤ (max

1≤i≤n
‖θ̂i − (B̂B̂T )−1B̂p̂i‖+ ‖(B̂B̂T )−1B̂‖

)
‖γ̂ − γ‖ →p 0

by Assumption 2(iii), consistency of γ̂, and the fact that ‖(B̂B̂T )−1B̂‖ is bounded in
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probability by Assumptions 2(i) and 2(ii). Moreover,

max
1≤i≤n

|(θ̂i−θi)Tγ| ≤
(∥∥∥(B̂B̂T )−1B̂− (BBT )−1B

∥∥∥+
∥∥(BBT )−1B

∥∥ max
1≤i≤n

‖p̂i − pi‖
)
‖γ‖ ,

where (B̂B̂T )−1B̂−(BBT )−1B→p 0 by Assumptions 2(i) and 2(ii). Further, as p̂i|(Ci,θi) ∼
Ci
−1Multinomial(Ci,pi), for all t > 0 we have

Pr

(
max
1≤i≤n

‖p̂i − pi‖1 > t

∣∣∣∣ {(Ci,θi)}ni=1

)
≤

n∑
i=1

(2V − 2)e−
Cit

2

2K (almost surely)

by the union bound and Lemma 1 of Mardia et al. (2019). Hence by Assumption 2(v),

we have

Pr

(
max
1≤i≤n

‖p̂i − pi‖1 > t

)
≤ n(2V − 2)e−

c(logn)1+εt2

2K ,

for c, ε > 0. Hence, max1≤i≤n ‖p̂i − pi‖1 →p 0 and so max1≤i≤n |ε̂i − εi| →p 0. It follows

that 1
n

∑n
i=1 |ε̂2i − ε2i | →p 0 by Hölder’s inequality. Hence, by Assumptions 2(i) and 2(ii)

we conclude that (B̂B̂T )−1B̂ (T4,n) B̂T (B̂B̂T )−1 →p 0. �
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B Further Details on the Simulation Exercise

Table B.1 presents the parameters used for simulation exercise. Since we used K = 2

types and type shares must add to 1, only the differences in regression parameters, e.g.

γ1−γ2 are identified, therefore in the simulation and estimation we normalized γ2 and φ2

to 0. Second, since class ‘labels’ are not identified in estimation, it is necessary to adjust

signs post estimation.

To investigate the impact of κ on the estimation of γ, we ran three sets of simulations

which vary only by the total number of features drawn per observations. For simplicity,

in each of the set of simulations we set Ci to be equal for all i. We set C ∈ {20, 80, 160}
which, given that N is fixed to 6400 corresponds to κ ∈ {4, 1, 0.5}.

To ensure the model is properly identified, in each simulation we set A = 100 features

to be ‘anchor words’ meaning that βj,0 or βj,1 is set to 0.

We simulated data 40 times for each set and then estimated the model using 1-step

approach, 2-step approach and the infeasible 2-step approach with known θ.

We construct 95% confidence intervals for γ1 and φ1 using the corresponding 95%

posterior credible intervals for these parameters. This construction is justified in view of

the discussion in Section 4.2.

Table B.1: Parameters for the simulation exercise.

Parameter Value Description

(a) Data Simulation

N 6400 Number of observations
V 300 Number of distinct features
Ci {20, 80, 160} Total number of features per document
K 2 Number of latent types
True φ 1 Effect of a covariates on un-normalized type shares
True γ 5 Effect of topic shares on numerical outcomes
True α (0, 1, 1, 1) Effect of additional covariates on numerical outcomes

gi ∼ N(0, log(3)
1.96

) Covariate affecting type shares
qi,m ∀m ∈ (1, 2, 3) ∼ N(0, 3) Additional covariates affecting outcome
σ2
Y 16 SD of the numeric outcome’s residual
σ2
θ 1 SD of residual of the un-normalized type shares
η 0.2 Dirichlet concentration parameter

(a) Hyperparameters

K as above Number of latent types
η as above Dirichlet concentration parameter
σ2
θ as above SD of residual of the un-normalized type shares
p(φ1) N(0, 4) Prior for φ1, i.e. σ2

φ = 4
p(γ1) N(0, 100) Prior for γ1, i.e. σ2

γ = 100
p(α) ∀m ∈ (0, 1, 2, 3) N(0, 100) Prior for α, i.e. σ2

α = 100
p(σY ) Gamma(1, 10) Prior for σY , i.e. s0 = 1 and s1 = 10
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We performed the simulation on a ‘N1-highmem-2’ instance on the Google Could

Platform. The instance has 2 vCPUs and 13 GB of memory. We also utilized a single

Tesla V100 GPU. We run chose 2000 warmup ans 2000 post-warmup iterations. A single

simulation (consisting of drawing the data, and estimating the model in three ways) took

approximately 10 minutes.
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C Example Code

1 from numpyro import sample, plate
2 import numpyro.distributions as dist
3 import jax.numpy as jnp
4 from jax.nn import softmax
5

6 class SUPTMC:
7 def __init__(self, K, N, V, z, q, eta = .1, alpha = 1):
8 self.K = K # number of latent types
9 self.N = N # number of observations

10 self.V = V # number of distinct features
11 self.z = z # number of covariates affecting outcome
12 self.q = q # number of covariates affecting type shares
13 self.eta = eta
14 self.alpha = alpha
15

16 def model(self, C, Z, Q, Y=None, X=None):
17 # Supervised topic model with covariates
18

19 # Y : regression outcome
20 # X : feature count matrix
21 # C : total number of features per observation
22 # Z : covariates entering regression
23 # Q : covariates entering type shares
24 # K : number of types
25 # eta, alpha : Dirichlet hyperparamters
26

27 #### Upstream Factor Model ###
28

29 with plate("topics", self.K):
30 beta = sample("beta", dist.Dirichlet(
31 self.eta * jnp.ones(self.V - self.num_anchors_per_class)))
32

33 phis = sample("phis", dist.Normal(0,2).expand([self.q, self.K-1]))
34

35 with plate_stack("docs", sizes = [self.N, self.K - 1]):
36 A = sample("A", dist.Normal(jnp.matmul(Q, phis) , self.alpha))
37

38 # document-topic distributions
39 theta = deterministic(
40 "theta",
41 softmax(jnp.hstack([A, jnp.zeros([self.D, 1])]), axis = -1)
42 )
43

44 distMultinomial = dist.Multinomial(
45 total_count=C,
46 probs = jnp.matmul(theta, beta)
47 )
48 with plate("hist", self.N):
49 X_bows = sample("obs_x", distMultinomial, obs = X)
50

51 #### Downstream Regression Model ###
52

53 gammas = sample("gammas", dist.Normal(0, 10).expand([self.K-1]))
54 zetas = sample("zetas", dist.Normal(0, 10).expand([self.z]))
55 sigma = sample("sigma", dist.Gamma(1, 10))
56

57 mean = jnp.matmul(theta[:,:(self.K-1)], gammas) + jnp.matmul(Z, zetas)
58

59 with plate("y", self.N):
60 Y = sample("obs_y", dist.Normal(mean, sigma), obs = Y)

Figure C.1: Numpyro’s code used to estimate Supervised Topic Model with Covariates
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